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ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complemenl the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in eithcr rcfereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. II will be used for research

that has reached a certain level of maturity but needs additional refinement, for

technical reviews or position statements, for bibliographies, and for computer

software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be
referenced in other publications.

Robert G. Voigt
Director
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PROCEEDINGS FOR THE ICASE WORKSHOP

ON HETEROGENEOUS BOUNDARY CONDITIONS*

f

A. l,ouisc Perkins

Massachusetts Institute of Technology

adld

Jeffrey S. Scroggs

North Carolina State University

ABSTRACT

Domain Decomposition is a complex wobtem with many interesting aspects. The choice

of decomposition can be made based on many differenl, criteria, and the choice of interface

of internal boundary conditions are numerous. Even more interesting from a modeling

perspective is that the various regions under study may have different dynamical balances,

indicating that different physical processes are dominating the flow in those regions. It may

be desirable to use different numerical approximations in the regions where the physical

processes are dominated by different l,:,l;u,ces ..........
7" "-rT_,_,, i. , :'"'" •

The Institute. for (,'omputer Applications in Science and Engineerifig,(IC'AS¢£), recogniz-

ing the need to more clearly define the nature of these complex problems, sponsored this

workshop on tteterogeneous Boundary Conditions at the NASA Langley Research Center

in Hampton, Virginia. This proceedings is an informal collection of the presentations and

discussion groups. It also includes a bibliography that contains many of the references that

discuss related topics.

The proceedings begins with summaries of the discussion groups. Then papers describing

the talks are presented. Lastly, the bibliography is included, and an index by subject is

provided.

*This workshop was sponsored by the Institute for Computer Applications in Science and Engineering

(ICASE) at the National Aeronautics and Space Administration (NASA) at the Langley Research Center,

Hampton, VA 23665.
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-7-' Visual Artifacts ,: /
Discussion Leader: Bill' Gropp I -

Argonne National Laboratory

Report by: A. Louise Perkins

Massachusetts Institute of Technology

The discussion began with Dr. Bill Gropp introducing the concept of visual artifacts in

numerical solutions. He presented examples of errors that appeared to be significant to the

human eye, but that were well below the error criteria for the problem, and did not impact

the quality of the numerical solution.

The discussion then focused on defining a model problem where visual artifacts could be

examined explicitly. ..

1

Model Problem

A. Louise Perkins

Massachusetts Institute of Technology

Introduction

k

At the ICASE Workshop on Heterogeneous Boundary Conditions a general optics problem

that allows interference was suggested for study. The large-scale interference pattern that

develops is quite sensitive to small perturbations in the boundary conditions. Hence it

seemed ideal for testing and observing errors due to grid interface effects introduced by

domain decomposition methods. Although the problem specification is somewhat arbitrary,

it is necessary to be specific in order to compare results because it is expected that several

researchers will explore this problem.

2 Error Measurements

The interference that we wish to test lends itself to error analysis using both a visual as well

as more standard numerical acceptance criteria. The more standard numerical criteria are

• propagation error

• L1 error

• L2 error

• Loo error

By propagation error we mean the phase difference between the computed location of the

wave front and the exact location of the same wave front.

Visually this problem gives rise to an interference pattern that can be compared for

sharpness as well as location. We are interested in seeing these differences across the artificial

interfaces introduced by the decomposition.



3 Motivation

Dr. Bill Gropp suggested we examine a problem that had visual meaning in its errors, to

allow studying the types of errors introduced between refined and coarse meshes at a more

intuitive level. He suggested an optics interference problem.

4 Optical Interference

Fermats' principle of least time is recast in Feynman et. al. [1] briefly from a quantum-

dynamical: perspective. By considering "rays of light" as photons, the ray path can be

considered a sum of the individual paths of the photons. The ray path is then defined by

the probability of each photon taking different paths.

Upon encountering a barrier that contains a wide slit, a wave will continue through

the slit almost undisturbed and geometric optics is a good model for ray behavior. But

when the slit is sufficiently reduced in size, the choices for photon paths are truncated, and

the probability distribution is altered, affecting the geometry of the wave front as it passes

through the slit.

This behavior is more easily understood by considering the simpler, less accurate, but

more intuitive, Huygens principle which states that "all points on a wavefront can be con-

sidered as point sources for the production of spherical secondary wavelets. After a time the

new position of the wavefront will be the surface of tangency to these secondary wa,celets",

as described in Halliday and Resnick [2]. Considering this simplified wave theory of light_ a

barrier in a wave path with a slit on the order of the wave length will cause diffracticgt. That

is, the end points allowed to pass through the slit will no longer have symmetrical wavelets

on either side, and they will bend at the ends.

Placing two slits aside each other will replicate the limiting behavior twice, and the

resulting wave patterns will interact, causing interference. The interference pattern will be

visible, and dependent upon the original wave frequency. This interference pattern is quite

sensitive to phase errors, so that the choice of grid sizes influences the solution behavior.

This is the interesting aspect of this problem.

5 The Interference Pattern

Consider the wave equation
c32u

-- AU.
Ot 2

Here A is the Laplacian. In the positive quadrant place two slits along the x-axis at locations

z: and z2, with

d _ x 2 - Xl.

Here xl and z2 are the mid-points of the two slits. Then for any point in the quadrant,

P = (z_,,yp), let d: be the distance from Xl to P, and d2 be the distance from z2 to P.



_g

Waves will arrive at P out of phase due to the difference in the path lengths dl and d2. The

maximum interference will occur when

Id2-dll = mA

where _ is the original incident plane wavelength and m is a nonnegative integer. The

minimum, of course, occurs at the half distances (m + _).

The size of our slits can now be specified. They should be at most of width $. A sllt

width less than or equal to the incident wavelength is sufficiently small to diffract the wave

on a visible scale. This problem is interesting because generation of the large scale pattern

depends on how accurately the small scale dynamics has been captured about the slits.

6 Geometry

Here we assume that the problem has been normalized so that

• _ = O,

Yb = O,

Yt = 1,

1 5A, z2 1We arbitrarily choose zl = _ - = _ + 5)_.

following page in Fig. 1.

This geometry is illustrated on the

7 Initial Conditions

The initial region, including all boundaries except the slits, should be quiescent (u = 0).

Prescribe a plane wave described by the following function:

27r

- vt) (7.1)

where )_ is the wavelength and v is the phase velocity. This impacts our domain along the

4.5)_] and [½ + 4.5)L ½ + 5.5),] of the x-axis for all time t > 0. Here, theslits [½ - 5.5)_, i -

equation reduces to
2r

sin-_(--vt). (7.2)

The phase velocity is known, allowing radiative boundary conditions to be defined. This

is done in the section 9.

3
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8 Exact Solution

The exact interference pattern is the superposition of the two waves. For any point P(z,y)
in the domain, the travel time to P will be different from the two slits." Let the tim# from

slit zi be ti. Then the value at P will be the sum of the Pi where

271"

= t,))

for (t-t_) > 0 and zero otherwise. We note that the distance from slit z_ to the point P(z,y)
is

2 t= - + v

9 Boundary Conditions

All boundaries, except the slits which are prescribed with the incoming plane wave, evolve

with the solution. Any workable boundary conditions can be applied on these boundaries,

with the goal that these boundary conditions should influence the interference pattern as

little as possible.

For our prescribed incident plane wave we have the exact solution. However, prescrip-

tion of these exact boundary values on our numerical approximation of the solution could

cause the numerical approximation to degrade. Hence we recommend radiative boundary

conditions because we know the phase velocity exactly and hope that the numerical phase

velocity is quite close to the correct one. Then an open boundary condition can be used that

advects the interference pattern out of the domain by advancing the wave equation,

where n is the direction normal to the boundary.

10 Domain Decomposition Method

Our purpose in examining this test problem is to measure directly the effect of mesh refine-

ment and the resulting mesh interfaces on a known wave that is sensitive to phase errors,

while concurrently being able to visually display a meaningful picture of the effects of the

refinement-induced error on the solution.

The Coarse mesh must be able to adequately represent the interference pattern for the

visual comparisons. It should be no larger than Az = Ay x= X, and may need to be smaller.
x

The workshop suggested _. We suggest that xX, _o and _0 all be tested. However, these

values are only apriori suggestions as we have not yet worked this problem.

The refined mesh must be able to adequately capture the diffraction behavior, _o that

the plane wave front "bends" as it passes through the slit. Given that the coarse and refined
q

5



meshesaresufficiently accurate,the phaseerrorsintroduced during the problem solution will

be a function of the sound speed on the two grids plus the coarse/refined grid interaction

errors.

Due to the geometry of the problem, non-adaptive local uniform mesh refinement is

adequate for the domain decomposition.

11 Discretization

We suggest a second order in space and time Leap Frog/Hopscotch discretization method

should be used. We anticipate beginning with I = 0.1, and t = 0.05.

12 Analysis

We expect that calculations for boundary errors and the ratio of mesh refinements will be

analyzed. These can be done both analytically and by comparison to an everywhere fine
mesh.

References

[1] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures On Physics Mainly

Mechanics, Radiation, and Heat, Addison-Wesley, (26-8), 1963.

[2] D. Halliday, and R. Resnick, Fundamentals of Physics, John Wiley and Sons, 1970.
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Fictitious Domain Methods

Discussion Leader: Rowland Glowinski

University of Texas at Houston

Report by: Garry Rodrigue

University of California at Davis

0 0")o7¢
Fictitious Domain methods are constructed in the following manner: Suppose a partial

differential equation is to be solved on an open bounded set f_ in two or three dimensions.

Let R be a rectangular domain containing the closure of f_. The partial differential equation

is first solved on R. Using the solution on R, the solution of the equation on 1_ is then

recovered by some procedure.

The advantage of the fictitious domain method is that in many cases the solution of a

partial differential equation on a rectangular region is easier to compute than on a non-

rectangular region. Not only do more accurate algorithms exist for rectangular regions but

they are also more computationally efficient. The difficulty in the method, of course, is the

procedure that is used to tie the "global" solution on R to the "local" solution on _. This

is generally where the inefficiencies of the method creep in and where most of the current

research on the method is being done. A classic application of a fictitious domain method

is the computation of the solution of an elliptic partial differential equation on a general

region. Here, the global solution on a rectangular region can be computed by a fast Poisson

solver. These solvers are quite effecient for rectangular regions but not for other geometries.

The global solution is tied to the local solution on the general region via ideas in capcitance

matrix techniques. A discusion of this approach is given in [1]. Other uses of fictitious

domain methods are given in the remaining references.

Fictitious domain methods for solving elliptic PDEs on general regions are also very ef-

ficient when used on a parallel computer. The reason for this is that one can use the many

domain decomposition methods that are available for solving the PDE on the fictitious rect-

angular region. In domain decomposition methods, the global rectangle is decomposed into

sub-rectangles of equal size and elliptic PDEs are solved on each sub-rectangle to provide

approximations to the elliptic PDE on the global rectangle This process is iterated upon

several times to get successively better approximations, see references in [4]. This is signifi-

cant in that the approximations on the sub-rectangles can often be completed simultaneously

and, thus, can be carried out in parallel on the individual processors of a multiprocessor.

Moreover, because the approximations to the global equation are furnished by the solu-

tions of PDEs on sub-rectangles of equal size, they can be calculated in the same, amount

of time. This is advantageous because the load balancing and synchronization overhead in-

curred from managing the tasks of computing the approximations on the processors becomes

almost non-existent.

The discussion on fictitious domain methods began with a short talk by Roland Glowlnski

where he gave some examples of a variational approach to fictitious domain methods for

solving the Helmholtz and Navier-Stokes equations. After Glowinski's introduction to the

subject, the question of the usefulness of the method was tossed out to the audience. A

7



comment was made that tile fictious domain method seems to be the only reasonable way of

solving three-dimensional partial differential equations on general domains. This statement
was justified by the admission by several people that the implementations of standard finite

element or finite difference techniques to 3-D problems is a horrendous task. The[e was a

considerable amount of discussion on this point but, in the end, the audience agreed that

the fictitious domain method is a viable approach to three-dimensionai problems and more

research is needed in this area.
t
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Dotnain-Decomposed Preconditionings for
Transport Operatorsi

TonyF. Chan* _ 5P I_j_o]7

William D. Gropp** . /Of )_ 3_ 7 _ _3_
and

David E. Keyes"* -- _('_ (¢__ ¢a;g

Abstract

We test the performance of five different interface preconditionings for domain-decomposed

convection-diffusion problems, including a novel one known as the spectral probe, while varying

mesh l)arameter, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect

ratio. The preconditioners are representative of the range of practically computable possibilities

that have appeared in the domain decomposition literature for the treatment of nonoverlapping

subdomains. We demonstr_tte through a large number of numerical examples that no single precon-

ditioner can be considered uniforndy superior or uniformly inferior to the rest, but that knowledge

of particulars, including the shape and strength of the convection, is important in selecting among

them in a given problem.

1. Introduction

Tile solution of linearized convection-diffusion equations of the form

ft. V_b - V-¢V_b = f, (1.1)

where ¢ is a conserved qu_tntity (energy, mass fraction, momentum component, etc.) transported

under the influence of velocity field ffand (liffusivity _ is required throughout computational physics.

Discretization by finite differences or finite elements results in a large sparse system of algebraic

equations whose solution can be deman(ling in computational resources and is one of the many

driving forces h_r parallel computation. Because the strength of coupling between a pair of dis-

crete unknowns governed by an equation like (1.1) decays with physical separation (more or less

isotropically depending upon c-*),it is tortured to l)artition the problem spatially when looking for

concurrency in tile solution algorithm, l)arallelism is, in fact, only one of several compelling reasons

for the recellt surge of rese_trch oil. domain decomposition algorithms exemplified by the volumes [9,

10, 17]. Others include a powerful theory describing optimal or near-optimal algebraic convergence
rates for hierarchical preconditiouers of domain-decomposed type, the convenience of composite ar-

ray data structures for describing complex shapes, a desire to employ solution techniques and qu,ali_ty_
i- % /

/tThis report is an augmentation ofa rel)ort, elditle(I luterJace Preconditioning Jot Domain-Decomposed Convection-Diffusion /

/Operators by the first and t|fird authors that appe,'u'ed in "proceedings of the Third International Symposium on Domain _'_

f Decompositiou Methods," T. F. Chan, R. Glow_kl, J, l>eriaux, and O. B.Widlund, eds., pp. 245-262, SIAM, 1_._..-_'--'_

(--- _j.ii_iit 0fTvF_¥ics_UCLA, Los Angeles, CA 9OO24. The _---fld-s author was supported in pa_Y_y NSF ASC

9oo3oo  oF: D V6,-G03-sr rl2o0, v, i rlo DAALO S -!% 8 
**Ma'_h_ 7m__r Science_ne lqatio,al Laboratory, Argonne, IL 60439. The work of this author

was supported in part,by tile Applied Matlwj_tical Sciences subprogram of the Office of Energy Research, U.S. Department

of Energy, under GontNlct W-31-1 _)-ENG-BS.._'.
*** Depal_l[-o-i"_ec'i_mide_LEng_g , Yale University, New Haven, CT 06520. Tile work of this autho._l: was axrpported_..

in pax_by NSF ECS-8957_,|75 _nd by tile National Aeronautics and Space Adtrdnistration under NASA Conf¢._ NASI-I_._5 _

while t'l'l'e author w'_n r(midcm:e at the hmtltutc for Computer Applications in Science and Engineering, ]q'-ASA-'L-_-gley ,

Research Center, llampto,l, VA 23665.
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softwarerestrictedto problemswith variouslocaluniformityrequirements(,_hicharesubpj'oblems
with regard to (1.1)), and sheer l)roblem size, which can ultimately push numerical ill-conditioning
and seri,'d memory tralIic beyond acceptable limits.

Preconditionings for interracial degrees of freedom have bee,l the focus of much attention dur-

ing the development of domain decomposition methods, and deservedly so, since interfaces of lower

dimension than the origiuaJ domain of definition of the partial differential equation are created by

a predominant form of nonoverlapping decomposition related to nested dissection of the underlying
finite difference or finite element matrix operator. We refer generically to such forms of domain
decomposilion as Schur iteration, since elimination of the subdomain interiors leaves a Schur com-

plelnent system for the separator unknowns. Ad(lition',d interest in interface preconditioning comes

front the fact that the classical Schwarz iteration, the prototype for overlapping decompositions,
has been placed il_to correspondence with a stationary iteration having as unknowns the interfa-

cial degrees of freedom of a nonoverlapping decomposition [6, 11]. This correspondence between

Schwarz and Schur methods enriches the study of domain decomposition algorithms in general,
because properties which are more easily analyzed in one framework may be extended to the other.

The present contribution focuses on the perfi)rmance of a variety of easily computed Schur

complement preconditioners in a rather special context: a single interface dividing a rectangle into

two subrectangles in which the capability of performing exact solves is presumed. We consider a

scalar convection-diffusion operator under a uniform or "terraced" diffusion coefficient and a variety

of continuity-satisfying flow fields chosen to exhit)it the relative advantages and disadvantages of
the preconditioners. The pristine nature of the prol)lem class allows focusing on the quality of the

interracial preconditioning, alone, in four different limits: large discrete problem size, large Reynolds

(or Peclet) number, large diffusion coefficient ratio, and large aspect ratio. (The Reynolds number

is the dimensionless ratio _'l/#, where _ is a characteristic velocity, l a characteristic length, and g a
characteristic diffusivity. Large values characterize strongly nonsymmetric, convectively-dominated

systems.) Any or all of these limits could be impo,'tant in a production engineering code whose

parallelization lnight be sought through domain decomposition. We show that no single interface
preconditioner is best in all limits, and therefore seek to qualitatively rank their sensitivities to

these limits and identify realms of superiority.

Several different coefficient felds b_ and _ are studied because the performance of all of the

preconditioners are sensitive to them and unjustified optimism or pessimism can result from too

narrow a study. Two of our five t)recouditioners have been amply studied previously in the sym-

metric positive delinite context of pure diffnsiou. There have been very few studies of any of them

in the convection-diffusion context, and since this case is also relatively untouched by theoretical

approaches, apart from spatially invariant velocity distributions, numerical studies are continuing
to yield interesting informa.tion. -_

We comment briefly on a few other issues which bear on on," choice of scope. It is possible to

set up an alternative framework for nonoverlapping decompositions in which interfacial coupling

is simply discarded, or pa,'tialiy accouute(l for in ways that do not require special treatment of a

separator set; see, e.g., [1] a,al [26]. In so doing one obtains the advantages of greatly simplified

coding and less inter-domain data traffic per iteration. Prol)lems dominated, by local interactions

can be handled quite accel)tably by decoul)ling; see e.g., [23]. Ilowever, in problems which axe

diffusively dominated (lnore fundamentMly, problems whose Green's functions have support which

is not substautially co,,fiued within at'tificial sul)domain boundaries), such approac!m.s haace limited
applical)ility to large numl)ers of gridpoints aud/or subdoniaJns.

The special case of a single interface obviates discussion of preconditioning tt)e set of vertices

where multiple interfaces intersect. Vertex preconditioning is very important but a_s0 more readily

prescribable, at least in two dimensions. A coarse grid problem for the vertices having the same

" i
i
I

i
i
i
!
i
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structureastile un(l(,conq)osedorigin,'dproblemcanbederiveddirectly from the differentialop-
eratorby employinga hierarchic_dbasisdiscretization.The interfacesystem,on the otherhand,
correspondsto a pseudo-differentialoperator,thenumericalanalysisof whichis relativelylesswell
developedin the presenceof convectiveterms. Ill a preconditionerconsistingof componentblocks
correspondingto subdomains,vertices,andinterracialedges(andinterfacialplanesin threedimen-
sions),any oneblockcan limit the overall performance. A study of interface preconditioning is

thus necessary, but not sufficient, for guiding the construction of complete preconditioners.
Finally, as to the relevance of our scope, we note that practical problems often involve several

simultaneous convection-diffusion operators linked through coefficients or source terms. Continued

study of the scalar case is, however well motivated by techniques such as the alternating block
factorization [4] which successfully employ scalar preconditioners inside of a change of dependent

variables which partially decouples the original system.

The algorithmic framework of our experiments is described in Section 2, followed by intro-

duction of the five interface preconditioners and a brief (lisclJssion of their properties in Section 3.

Section d contains performance measurements in the form of iteration counts along several axes of

problem parameter space. We draw some conclusions at_d recommendations in Section 5.

2. Schur Domain Decomposition Methods

We t;d_e as our starting point the matrix equatioH Ax = b arising from a finite difference dis-

cretization of of (1.1). The domain decom position met hod we employ is an iterative substructuring
method consisting of three elements: (l) the operator A whose inverse action we would like to

compute with an accuracy commensurate with the discretizatlou, (2) an approximation B to A,

whose inverse action is computatiotlally convenient to coml)ute , and (3) an acceleration scheme for

the preconditioned system which requires only the ability to form the actions of A and B -1 on a

vector. In all cases reported herein, A is derived from a second-order central differencing of the

diffusion term and a first-order upwind differencing of the convection term. Extensions to second-

order upwind differencing lmve been carried out in, for instauce, [27]. We us6 right-preconditioned
GMRES [30] as our iterativc acceleration scheme, that is, we solve AB-_y = b by the applying the

standard GMRES algorithm to (AB -1) then recover x through the solution of Bx = y.

GMRES is guaranteed to converge in a finite number of steps for nonsingular AB 21 even in

the presence of nonsymmetry or indefiniteness, assuming exact arithmetic. The maximum number

of steps required is the number of (listiz_ct eigenwdues of the preconditioned operator. This con-

vergence result depends upon dynamically storing a complete basis for the Krylov space built from

powers of AB -1 acting ot_ the initial residual vector. For large problems, this much memory can

easily become excessive, and GMRES is often truncated or restarted [30] in cases where it does

not converge within a predeternfined nunlber of steps. I[owever, we allow full GMRES iteration

in our experiments, up to some maximum number of steps (set at 30 herein) which is sufficient in

all but two cases. Because fewer than 30 steps are almost always sufficient, we effectively suppress

from consideration the restart or trunc_Ltion parameter. This parameter can be important in a

"production" setting.

The substructuring euters through the manipulation of A and I3 into forms which possess

large block zeros, for the sake of concurrency or for some of the other reasons noted in the intro-

duction. For elliptic operators such as (l.1), A is irreducible; hence there are no block triangular

permutations, llowever, if the domain is cut by the removal of a swath of gridpoints as wide as the

semi-I)amlwidth of the st(,ncii, two largo subl)roblems are created whose only coupling is through

the small removed set. For live-poiut stencils on logically tensor product grids, we may choose

a single row or column of unkaowns. (A two-point-wide generalization has been studied for the

thirteen-point biharmonic stencil in [8].) Ordering the separators last, we obtain

1!



( oAx =- {) A_2 A z3] x_ = b2 - b. (2.1)
'i31 A32 A33/ x3 b3

Ih;re, All and A2_ are live-point operators with bandwidth no larger than that of the naturally

ordered original system, but A33, which renders the coupling between the points on the interface

itself, is trhliagona.l. The other blocks contain the coupling of the separator unknowns to the

subdomMns, and vice versa. Front the point of view of the continuous operator they represent
derivatives in directions non!lal to the interface:

Block Caussian elimi,lation of the unknowns xl and x_ would yield the schur complement

system
Cx3 = d (2.2)

for x3_ where

and

C = A33 - :i:_t/li-i 1A t3 - A32 A21 A23 (2.3)

d = b3- AajA-_t|bt - A32AYz_b'_. (2.4)

If x3 can be found, the sub(Ionlain 1)roblems are decoupled. ]lowever, direct computation of the

generally dense C in order to solve (2.2) requires as many pairs of exact subdomainsolves_ there

are degrees of freedom in x3, which is generally prohibitive. It is also unnecessary inasmuch a.s
iterative techniques have been devised which require many fewer iterations than fiae dimension

of x3, and which furthermore require only at)proxinmte subdomain solves in each iteration. As

mentioned already, we shall ignore the option of inexact Subdomain solves in the sequel, effectively

reducing the iterations to the iut('rfa(:e, but we nevertheless make use of a general purpose code
which retains the interior degrees of free(lonl in carrying out the numerical experiments.

We consider two families of precouditioners B, tile structurally symmetric

/31= / 0
A3t

A01 0= A2_

\ 431 A32

where A[ apl)roximates the Schur

triangular

A]t 0A3,2A,_,_MOO)( IOA-{tlA13)O0OI A_IA23 :_:_ :::

)A t3
t[23

,_l + a31 All 1,413 + A32A21A23

complement C (2.3) of .411 and A22 in A, and the simpler block

A 11 0 A t3 \H 2 = 0 2122 A'23 fl •0 0 M

Tile fa(:torized form of ItL above shows tlkat thc cost of a.pplying the inverse of B1 is one solve
with M arid two solves each with At! and A22. 'l'lmre is an inimrent sequentiality to the subdomain

solves, however, since the system involving M in the left factor requires data from the first set of

subdomain solves. The inverse of B.z can bc applied to a vector at the cost of solving one system

each with hi, All, and /tee. The system h)r M is solved first, followed by independent solves in

the sul)domains which use the interface vahles as boundary conditions. ::- - '-_ -:

We assume throughout that the Aii are invertible. (This is certainly a reasonable requirement

for a discrete convective-diffusive operator attd is guaranteed herein for all Reynolds numbers by

upwind differencing.) Under this assuml)tion, C is also invertible [15]. -- . ,

12
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For matrices arising fi'om st;mdard quasi-uniform finite element discretizations of elliptic partial

differential equations, A has a condition number of O(h-2), whereas C has a condition number of

O(h -1) [5, 29]. The equiwdence of conjugate gradient iterations on tile Schtir complement system

with prcconditioner M and on the full ,_ub_'tructurcd matrix A with preconditioner B1 was shown

in [24].
For reference in Section 4, it is interesting to note the forms of the preconditioned'operators

AB{ l, and AB_ 1. In order to make the formulae more readable, we combine the independent
subdomain solves into a block matrix An, and denote the separator block by At, to re-express the

above matrices as

(noA.,).,:(A. ) Ao )A = AI'U A[- ' At'l_ M + A1,x2A_lAm - ' M '

whence

ll;' = ( A_| + An| Afll'M-t A['"A_I -A_t AI_I'M-1)_3',/-1 A[,_2A_! M-I

and

B-I (A_l -A_IAf_F M-l)'2= 0 M -1 "

From these expressions it can easily be verified that

ABll= ( l 0 ) andaB_l ( I 0 ) (2.5)(I- CM-I)/li'I_A_ l CM -I = ArnA_ 1 CM -1 "

It is evide_lt that if C is exactly represented by 3,I, then AB_ 1 reduces to the identity, and

an iteration involving AB_ -1 will converge in one step requiring two sets of subdom_n solves.

An iteration involving ABle t, on the other hand, will converge in two steps (from an arbitrary

initial guess) if M = C, but each step requires only one set of subdomain solves. (These iteration
counts do not include the final solve with either Hi or Be which is required to unwind the right-

preconditioning.) More generally, if M is sulliciently close to C in tile sense that the lower-left block
of the structurally symmetric system is small, I1(1 - CM-_)II << 1, we expect that an iteration

based on B2 will require an extra iteration relative to an iteration based on B1. Conversely, if M is

a poor preconditioner for C, so that the lower left block becomes large, the use of the structurally

symmetric system could require more iterations than the use of the block triangular system. Both
behaviors are illustrated in Section 4.

Note fl'om (2.5) that AB_ l and AB.z I have identical spectra, as Arnoldi estimates for the

eigenvalues obtained _s a by-product of the GMRES iterations also show. Itowever, Krylov se-

quences based on the respective operators will in general differ, and there is little that can be said
about which method will lead to faster convergence for general 6' if 3,I and C are not sufficiently

close.

For some of the preconditioJler components M we consider, the overall preconditioning process
is numerical unstable, as will be seen in Section 4. Even though the iterations involving AB -1 may

converge, the final result after unwinding the preconditioning may have few or even no significant

figures. For this reason, we always check tile actual residual IIf-mzll at the end of each calculation.

3. Schur Interface Preconditioners

We proceed to delineate live alternatives for the matrix M.
O

3.1. Interface Probe Preconditioner .......

Interface probe preconditioning is a family of methods for approximating the true Schur com-

plement C defined in (2.3) by low bandwidth matrices. We use the nomenclature IP(k) to denote

13



theapproximationsequenceM = Ar - Ek, k = O, I, 2,..., where Ek is a matrix of semi-bandwidth

k which l)roduccs tile same action as Al_t_A_lAt_r . on a set of2k + 1 test vectors. Note that when A

arises fi'om a five-point fiuite-difference discrctization both the IP(0) and IP(1) preconditiohers are

tridiagonal because AQr is. As k increases beyoud l, M a(:quires additional diagonals. Selection

of test vectors of apl)ropriate sl)arsity patterns emd)lcs the coeflicients of Ek to be read directly off
-I

of the product involving Ai'_A_ Al_l', hence the term "probe." We report only on the row-sum
conserving IP(0) herein. IP(1) is only rarely more cost effective than IP(0) over the range of non-'"

symmetric scalar five-p0int stencil problems studied herein, and a law of diminishing returns sets
in as k is increased.

IP(0) was invented ilMependeutly by Chan and Eisenstat in 1985, immediately generalized to
IP(k) in [14], and adopted for variable coefficient symmetric problems in [24] (where it was called

the "modified Schur complement" method) and for nonsymmetric problems in [25, 26]. Symmetric

versions of IP(0) and IP([) have also been emI)loyed in [2, a]. Many algebraic and spectral properties

of banded and circulant probe preconditioners are derived in [13]. The interface probe technique

has the advantage of being purely algebraic in character, and hence capable of being defined for

arbitrary operators. It is aesthetically l)lea_sing that the tunable parameter k may be taken from

the crude approximation of 0 all the way to the full bandwidth exact solution. It has also been

generalized in a straightforward way to mu]ticompoimnt systems [26]. Itowever, IP(k) for low k

is not expected to be particularly useful for arbitrary matrices. The low k limit is motivated by
the observation that the elements of C dcc_y rapidly away from the diagonal for elliptic problems.

In sufficiently simple elliptic problems (e.g., those possessing constant coefficients) preconditioners
described below t-aking better advantage of this Structure are also possible, ieav_ng iP(k) large

but not unlimited regions of problem paranmter space in which to exercise. Interf_e probing

has the advantage of being automatically ad_tptive to spatial variation in the coefficients but the

disadvautage of not possessing the property of spectral equivalence, a consequence of which is that

it degrades as the mesh is refined. Experiment;ally [24], the condition number of the preconditioned
Schur complement system for the Laplacian goes like h -l/_, and this bound is conjectured to be

the best attainable for any tridiagonal matrix based on experiments witl_ an optimization code in

[20]. An h-I/2 bound is proved for a circulaut probc-l)reconditioned system with periodic boundary

conditions ou the boundaries normal to the interface in [13].

3.2. Spectral Preeonditioner

The spectral precouditioner is an exact eigendecomposition of a single interface, rectangular

domain, constant coefficient convection-dilfusion el)crater described in [12] as a generalization of [7].

We consider only the Dirichlet case herein, but generalizations to Neumann boundary conditions are

straightforward. Let an interface of u interior nodes (i.e., h -1 = n + 1) separate two subdomains of

the same discrete length, and itiscrete heights ml and m2, respectively, over all of which is satisfied

tim difference equation

axl-i,j + bxl,j + cxi+l,j + dxi,j+l + exi,j-1 -- fi,j, (3.1)

where i denotes the free index along the interface. We may write M = DWAW-1D -1, where W

is the discrete sine transform of length u with matrix ret)resentation

[14"]i/= 'v/:_si,l ij_rh, (3.2)

D is the diagonal matrix with eh, ments

[D]i = (a)(_-t)/2 ,

14
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Figure 1: Modes of the Dirichlet problem (3.1) for n = 15.

(a) [a/c i = 1, j = l; (b)[a/c I = 1.21, j = 1; (c)la/c] = 1,
j = 8; (d) ia/c] = 1.21, j = 8; (e) la/ci = 1, j = 15; (f)

ia/c[ = 1.21, j = 15. (The left-hand column of modes are for

the case of no tangential convection.)

and A is a diagonal matrix with elements

_ [A]_= E _.y?,+, + I - -i?_+')
(3.4)

where, ill turn,

and

+ - o,)+ x/[o+v (2 - - 4de]

( )ai = 4sil, _ \2(n + 1) "

(3.5)

I

(3.6)
Q

The derivation of these formulae (see []2] for full details) begins with the observation that the

columns of the matrix (DW) are the eigeuve('tors of the tridiagonal matrix formed by the coefficients

along the interface, viz., tridiag(a, b, c). Saml)le such modes are plotted in Figure 1 for two different

values of the ratio la/cl corresponding to zero and constant nonzero tangential components of the
convection. The nonvanishilig tirst-derivative convection term has the effect of multiplying the

sinusoids by an exponential.

The philosophy of using the spectral preconditioner for arbitrary interfacial systems is that

of solving an approxinu_te (const:tnt coelticient) problem exactly, rather than an exact (general
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coefficient)prol)lenlapl)roximately.Oneof its advantagesis that it,canbedefinedwithout requiring
theability to solveprol,lenlsin adjacentsubdomains,asrequired by the interface probe technique.

All that is needed is some averaging rule to obtain the coefficients a through e from the data of

the associated regions. All our tests herein employ a simple average of the coefficients along the
interface alone. Another advantage is its automatic adaptivity to domain aspect ratio, since the

boundary conditions are built into tile derivations. We note that application of M -1 is inexpensive:

two one-dimensional FFTs sandwiched between three diagonal matrix multiplications.

8.3. Spectral Probe Preconditioner

The spectral probe preconditioner, introduced here for the first time, is conceptually a hybrid
of the interface probe and the spectral preconditioners. Spectral probing assumes a form for the

eigenvectors of C like that derived for the constant coefficient operator of the previous subsection

(again based on spatially averaged coefficients), but then populates the diagonal matrix A by

probing the true Schur complement, so that some spatial adaptivity is accommodated within a

spectrally equivalent framework.

We set M = DWAW -1D -_ where W and D are defined as above (or where D is alternatively

simply set to the identity matrix, correspondil_g to a = c, for reasons which will become clear in

Section 4). A is then determined by probing with the interface vector of all l's. This is the same as

the standard test vector for IP(0). To be explicit, we read off the elements of A from the equation

W-I D-ICDW • 1 = A* 1.

The action of C is comi)uted by means of a pair of subdomain solves using D'W. 1 as the ijaterface

boundary condition. Note that the spectral probe preconditioner reduces to the spectral precon-

ditioner ill the constant coeflicie,lt Dirichlet c_se, because then C is exactly diagonalized by the
given similarity transform.

3.4. Laplacian Square-root Preconditioner

As a base-line reference, and because it, appears throughout the literature, we include tests
with a method based on the square-root of the o,le-dimensional Laplacian operator, easily written

as:

M = WAW -l,

where A is now the di_gol_l matrix with elements [A]I = 2vf_. We sometimes denote this oper-
ator as Dryja's preconditioner because of its popularization in this context in [16]. More general

discrete a ntecedants were considered in [18]. It is (liffictdt to pinpoint the discovery of the spectral

equivalence of this operator to the Schur complement of th(_ l,al)lacian, since the continuous analog

of this equivalence has been known for some time. This preconditioner is expected to be good in

diffusion-dominated proble,ns, or in the discrete limit h _ 0.

Note that this preconditioner is distinct from tile spectral preconditioner (§3.2) for the Lapla-

clan. Dryja's preconditioner _!_(shieves a constantJ)ound on the number of iterations as the mesh is

refined, but the constant iS generally higher than tiiat achievable with the coefficient and a.spect

ratio adaptability of the l)revious two techniques. Tile literature also records two important prec0n-

ditioners intermediate between the Dryja a.tJ(l spectral techniques, namely [19] and [5]. The latter,

the Neumann-Dirichlet preconditioner, contains some of the adaptive capabilities of the spectral

preconiiitioner since it relies on subdomain solves in its cons{ruction and hence Contains much coeffi-

cient in formation. It is simil;_r to probing techlliques in this regard. In fact;_the Neumann_-Dirich!et

techniques of [5, 7, i6,_19]_were tested in [24], but for brevity we test only the extremes here.

3.5. Tangential Preeonditioner : _ _: -:_ ......

Fillally, we consider _ silnple preconditioner possessing parti_i aclaptivity, a lower-dimensionaa

restriction of the operator to the interface created by setting all of the normal derivative terms in

16



theoperatorto zeroandretainingjust tile remainderin M. For (1.1) these are just the tangential
derivative terms. The obvious motivation for this technique is that it is simple and is expected

to work well in tile limit of strong convection along the interface, a limit which turns out to be

troublesome for the spectral and spectral probe l)reconditioners. In addition, its very satisfactory

bellavior ill tile multidolnaln experiments in [21] recommend it. For reasons not yet theoretically

explained, it l)erforms very well in conjunction with the block triangular form of the the overall
preconditioner described in Section 2. A minor disadvantage is its requirement of partial knowledge

of the differential operator, rather than simply the elements of the discrete operator A, To be

specific, it is necessary to store separately the contributions to A arising from the normal derivative
terms, and all other terms.

4. Numerical Experiments

All of the experiments to follow except for those of Table 14 are posed on the unit square (l = 1

in the definition of the Reynolds number, Re) with homogeneous Dirichlet boundary conditions.

The five different continuity-satisfying flow fields tested are shown in Figure 2(b)-(f), along with

a purely diffusive baseline case (Figure 2(a)). When Reynolds numbers are reported below for the

variable coefficient cases, they are always based on the maximum velocity in the region. (See [28]

for details on the jet and cell flows and other experimeuts on this particular problem set.) The

interface divides the rectangle into equal upper and lower portions, as marked on the figure in the
dashed line. In addition to cases with constant diffusion, we study in §4.3 a convectionless case

with piecewise constant, l)ut disl)aratc, diffusivities on either side of the interface.
There is a constant source term of unit strength in the interior. Although it is special, a zero

initial guess for the solution vector is employed throughout, since this will usually be the natural

choice when (1.1) arises for a Newton increment, as part of an outer nonlinear iteration. The

performance of the preconditioners is measured by the number of iterations required to reduce the
initial residual by a factor of l0 -_, regardless of the mestl resolution. The tables of iteration counts

are grouped by subsections into four sets of experiments.

4.1. Sensitivity to Mesh Refinement
Tables I through 6 examine a constant Re situation as the (uniform) mesh is refined by three

successive powers of 2. Of course, the discrete diffusion term, the Laplacian, becomes more and

more dominant with each refinement of the grid, since it scales as h -2 as compared with the h -1

scaling of the convection term. This is the asymptotic limit for which D and its relatives S and

SP are designed. In the first table, the Laplacian is studied in isolation (Re = 0). In the next

five convective cases, Re = 16. For the coarsest mesh (h -1 = 8), the contributions to the diagonal

of the discrete operator fi'om the two terms are equal at this Reynolds number (the cell Reynolds

number, R,ec = chic, is 2).

h - 1 T IP S

8 5 5 2

16 7 7 2

32 9 9 i 2

64 [ l 12 I 2

I IPl s I sp D ]
t

6 1 1 5
9 I 1 5

I 11 I I L_.___

Table 1: Iteration counts for the pure diffusion problem as a

function of mesh parameter for two different preconditioner
structures and five different interface blocks.

Structurally Symmetric Block Triangular
SP I D T

2 [ 4 4

2 I 5 4

2 I 5 4

2 I 5 [ 4
I
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Figure 2: Streamfunctioa contour plots of the two-dimen-

sional flow fields represented by E ill the numerical experi-

ments. (a) Pure Diffusion; (b) Normal Convection; (c) Tan-

gential Convection; ((t) Skew Convection; (e) Jet Convection

(the domain is the right half of a symmetric flow field); (f)
Cell Convection.

The S (spectral), SP (spectral probe), and I) (Dryja) columns of Table 1 reveal their exactness

or spectral equivalence, respectively. Because iteration count is a threshold measurement, most of
the data is subject to -1-1 pe,'t u rbation upon modest adj ustment of the convergence tolerances, but

the S and SP residuals at convergence are zero to machine precision. The deterioration of IP like
symmetricsome negative power of h is evident on both the structurally (B1) and biock triangular

(B2) sides of the table. The tangential preconditioner is the only one with markedly different

performance depending upon the structure of B. IIere, as below, it is excellent in conjunction with

the block triangular fo_n:

Structurally Sy m metric Block Triangular

h -_ [ IP S -S-t'--_ _ IP __ SP D T

--8-/3 1 il-415 4 245

16 I 5 l 5 7 6 2 5 5

32 I 6 l 5 I 9 7 2 " 5 5
5 '

64 I 7 1 1 55_12 8 2 5

Table 2: Same as Table 1, except for normal convection at ,

a Reynolds number of 16.

+ .

Table 2, for a normal convection probletn, is similar to Table+ 1 except that IP improves slightly

I
|

I

|
|

+ i
. _+
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aseachof the terms Aal ATi IAle and Aa2A.2_1A23 being approximated by a diagonal matri_ becomes

less important relative to Aaa because one of tile coupling matrices is small. For instance, if the
convection is fronl subdo,nain I into subdomain 2, Ale and A32 are weak.

i

h-l
J

8 I

I

32 I
64 I

Structurally Sym metric
I1' I S SP D W -]P

s l ..... 7 G s
6 I 1 10 10 9 7

8 I 1 11 11 11 9

11 I 1 12 11 15 12

Block Triangular
S SP D T

2 8 7 4

2 11 10 5

2 12 11 5

2 13 11 5

Table 3: Same as Table 1, except for tangential convection

at a Reynolds number of 16.

The importance of the D matrix in the spectral preconditioner is evident in Table 3 in which a

tangential convection problem is considered. The version of SP employed in this study approximates

the D in its definition as the identity; using the true D here would reproduce the spectral results

in this constant coefficient case, just as in the previous two tables in which D = I anyway. Though

SP and D are spectrally equivalent, they require an order of magnitude more iterations than S, and

are surpassed by IP in the smaller problem range on the structurally symmetric side, and by the

tangential preconditioner on the block triangular side.

Structurally Symmetric Block Triangular
h -1 IP S SP D T IP S SP D T

8 4 7 8 7 5 2 8 8 6

16 5 9 10 9 6 2 10 9 6

32 7 10 10 12 8 2 11 10 6

64 9 10 l0 15 10 2 11 11 7

Table 4: Same as Table 1, except for skew convection at a

Reynolds number of 16.

Table 4 contains the last of the constant coefficient test examples, featuring a skew convection

(inclined at 45 degrees relative to the interface). Overall results are not very different from the

purely tangential convection ca_e. Most of the entries In the skew table lie at or between cor-

responding entries in the norm_d and t,mgential tables. Those of the taalgentlal preconditioner,

however, are often worse in the intermediate skew convection case than at either extreme.

Structurally Symmetric
h-_ { IP " -S ...... Si i-- O '['-- IP

8 1--5-1_-_--- 5 _ G 6 5
16 I 16 4 6 6 8 7

l 32 I 9 4 6 6 11 , 10

Table 6_ Same a_ Table 1, except for

Reynolds number of 16,

B i0el_-Trl an_ ;ular

-s 'r
5 6 I 6 5

5 " ' 7 6

5 " ' 7 7

5 =rj r 8
jet convection at a
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The jet case recorded in Tal)h, 5 t(mds to level tile precondltioner landscape because the
constant coefficient a pproxim_tion of S is no longer exact. S remains the best technique as h -1

increases, but its margin of superiority over other spectrally equivalent techniques (with D as a

nonadaptive extreme) is small.

-%__][ ....

8

16

32

64

Structurally Symnmtric Block Triangular

IP S SP D T IP S SP D T

,l 5 4 5 5 5 5 5 5 5

6 5 5 6 7 7 6 6 6 6

9 5 5 5 9 10 6 6 6 6
II 5 5 5 iI 12 6 6 6 6

Table 6: Same as Table 1, except for cell convection at a

Reynolds number of 16.

Tire cell case of Table 6 is the greatest equalizer among the test cases, because the interface

cuts a zone of redrculation, i.e., there is normal flow across it in both directions, and none of the

methods holds an edge of superiority. Performance under the block tridiagonal preconditioner is

notably uniform for the last four methods.

4.2. Sensitivity to Reynolds Number

Tables 7 through l l examine the in[luence of increasing Reynolds number. Values of Re of

0, 4, 16, 64,256, and 1024 are considered at h -I = 64. Thus, the third row of each table in this
subsection is the same as the last row of the table of corresponding flow type in the first set,'and the

first row of each table is the same as the last row of the pure diffusion case in Table 1. Progressing

down the rows of the table the nonsymmetry of the operator increases. Between rows, four and

five the convection terms begin to contribute more heavily than the diffusion terms to the diagonal

elements of A.

Re

0

4

16

64

256

1024

Struct u rally Symmetric

iv I S sv D
11 [ 1 1 4
10 I 1 1 4

7! , 1
5 I 1 1 7

3 ! 1 1 11

Block Triangular
T S SP D T

.... i

ll 2 2! 5 4
11 2 2 5 4

12 2: 2 i 5 5
14 2 2 [ 7 6
17 2 2 10 9

2 2 12 16
..... !

IP-

12

11

8

6

4

22 3

Table 7: Iteration counts for the norm_d convection prob-

lem at a constant mesh l>arameter of 1/64 as a function of

Reynolds number for two different preconditioner structures
and live diffcreut interface blocks.

Table 7 shows that in the presence of constant normal convection, techniques S and SP remain

exact at any Re, while IP catches up at high Re, and D and T successively worsen. (For D, this
is the drawback of finite h in a method derived for h _ 0.) Qualitatively, the trends are the same

for either preconditioner structure, although the tangential method continues to be much better in

the block triangular formulation.
Tire Achilles' heel of the spectral technique appears when there is strong convection tangential

to the interf,'u:e, as seen in Table 8. In this limit in which [ale] differs sufficiently from unity the
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Re

0

4

16

64

256

1024

Structurally Symmetric Block Triangular
IP

11

12

11

8

7

5

S SP D
..... 4 .......

1 1 4
1 7 7

1 12 I 11

1 20 15

- > 20

- > 26

T IP S =l SP D

Ii 12 2 I 2 5

14

15

14

12
8 i

__ ]

13 2 I 8 8

12 21 13 11
9 2 I 21 15

8 - I > 19

6 - I > _ 24
..... L° , I

Table 8: Same as q'able 7, except for tangential convection.

The hyphen denotes loss of precision, and the ">" more than
30 iterations.

TI
5 I
3

1
i

1
J

latter terms in D, which have this ratio raised to as much as (n - 1)st power, can approach the

machine epsilon (or its reciprocal, depending upon the direction of the convection). In reference to
(3.3), we note that for n = 64, (a/c)(n-1)/2 ,_ Cm_,ch_ 10-_6 when (ale) ,._ 10(-32/63) _.. 0.31. Under

upwind differencing, it only takes a cell Reynolds number of 2 to produce a ratio of 3 between the

upwind and downwind stencil coefficients a and c. Thus, Rec = 2 is the borderline of stability

for the spectral preconditioner with respect to tangential convection. In the tables, the Re = 64

row corresponds to a cell Reynolds number of unity, and the Re = 256 row to a cell Reynolds
number of 4; thus, they straddle the transition. GMRES iterations based on the spectral interface

preconditioner do terminate for the hyphenated entries, but the residuals based on the resulting x
vectors shows complete loss of precision.

The spectral probe technique does not lose precision, because of the assumption that D = I;

however, a diagonal approximation for W-tCW is poor, and it simply takes too long to converge.

The Dryja preconditioner, which makes no attempt to adapt to the strong directionality of the

problem also deteriorates with Re. At low Re where M and C are close, the B1 iteration count

is lower by one; but at high Re, where isotrol)ic M is very different from unidirectional C, the B2

iteration count is better. The interface probe technique meanwhile improves with Re as it captures

more of the increasingly diagonally dominant problem within its own sparsity structure. Finally, the

tangential technique is excellent for a tangentially dominated operator. The cross-diffusion which

it neglects becomes of negligible importance as the problem effectively decouples into independent

problems for All, A22, and A33 in which the Ul)streanl boundary condition is all important.

Re

0

4

16

64

256

1024

[ Structurally Symmetri.c

I IP S I SP I
I 11 I ! . .

11 1 _ " '

I 9 1 : 10 I
7 1 i 13 I

I 4 - ! 131

Table 9: Same as

D I T I
i t

_' ' 11 /

' I'1 I

10 I 15 I

14 I 17 I

la I 19 I

20 I 19 I

Block Triangular

IP S l_8Pii ] D8 I T---

........ -4 .........

---_-- 2 I 5 4
12 2 I 6

10 2 I 11 I 11 7

i 21 14 14 8
- , 14 16 9

- , 10

Table 7, except for skew convection.

Most of the observations of the high Re tangential flow also apply to the skew flow in Table 9,

however, the latter differentiates between IP, which repeats its tendency to improve as Re grows,

and T, which no longer matches the physics of the problem, and is worse than IP, although it is

still superior to the Fourier-l)ased methods as a module of the block triangular preconditioner.
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We also note that tile spectral probe technique captures a significant part of the pttysics in

this case, adapting to the co-dondnant normal convection and tending to a constant iteration count

without breaking down. It thus rescues the spectral technique and indicates how the rol:mstness of

the spectral preconditioner carl be maintained with a compromise in efficiency. In a general purpose

code, the elements of the D matrix could differ from unity but be bounded artificially, allowing

partial tangential adaptivity with fidl normal adaptivity.

Re

0

4

16

64

256

1024

Structu rally Symmetric

IP S SP

11 1 1

11 3 4

11 4 6

10 6 9

9 7 11

9 - 20

Table

D T

4 11

5 14

6 14

9 [,1

ld 13

19 14

Block Triangular
IP S SP D T

12 2 2 5 4

12 4 5 6 6

12 5 7 7 8

ll 7 10 10 9

10 8 12 14 10

10 - 21 18 11

10: Same as Table 7, except for jet convection.

As in the spectral equivalence tests in Table 5, the jet case recorded in Table 10 tends to

diminish the extremes of preconditioner behavior relative to the uniform skew convection case.
The IP and SP results worsen while the D and T methods nearly hold their own relative to Table 9.

The pure spectral method survives at a higher overall Reynolds number because the tangential
velocities at the interface are lower than the maximum core velocity of the jet, to which Re is

scaled.

Struc! urall_ym metric

Re IP

0 11
4 11

16 i1

64 13

256 18

1024 25

Table

Block Triangular

s I
1

3

5

8

14

23

1

3

5

7

II

16

I) T IP S

,I 11 12 2

4 II 12 4

5 11 12 6

8 13 14 9

14 16 19 15

23 26 26 23

SP D T

2 5 4
4 5 5

6 6 6

8 9 8

12 14 15

17 23 24

11: Same as Table 7, except for cell convection.

Again, the cell case of 'l'able 11 is an equalizer for most of the methods; however, the perfor-

mance of the spectral probe technique is singularly good. This is easily explained as follows: the

average tangential velocity along the interface is zero because of the symmetry of Figure 2(f), so
D = I for both S and SP. l[owever, S also employs an zero average for the normal velocity, whereas

SP adapts to strong inflow and outflow along opposite halves of the interface. The perf(;rmance

of IP, which improves with Re in all previous tables, deteriorates in this table because no pair

of coupling matrices is weak (see comments on Table 2) under recirculation. Performan°ces under

the structurally symmetric and block tridiagonal schemes of the tangential preconditioner become

similar at high Re. The recirculating cell flow is in some sense a worst case for a single interface. If

the domain of Figure 2(f) is further decompos(.'d by a vertical interface, putting a vertex in the cen-

ter, all four interfaces would be free of two-signed velocity components, and easier to precondition.

(The cross-point preconditioning then becomes an important subject.)
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(d) RATIO=64

Figure 3: Contour plots of the solution to V • eVu = f

with homogeneous Dirichlet boundary conditions and f = 1

for various ratios of the (piecewise constant) diffusivity in

the adjoining subdomains. "Ratio" is eto,_e,./e,,pv¢_ and the

product _to,_,-q, vp_ is maintained at unity.

4.3. Piecewise Constant Diffusivity

This subsection focuses on the effectiveness of the preconditioners in heterogeneous problems.

With reference to Figure 3, we assign a higher diffusivity in the lower domain than in the upper.

We report convergence results in two limits: fixed diffusivity ratio and increasing h -_ (Table 12)

and fixed h -_ and increasing diffusivity ratio (Table 13).

The performance of the two probe and the tangen tial preconditioners in the terraced diffusivity
case in Table 12 is identical to their performance in the uniform case of Table 1. However, the

Dryja preconditioner is slightly worse and the spectral preconditioner (based on the arithmetically

averaged diffusivity) is much worse than in the uniform case. In fact, S is the worst preconditioner

in the terraced diffusion case while SP is the best, the probe supplying crucial information.

As the ratio of diffusivities increases for a fixed problem size, as in Table 13, all methods

asymptote monotonically to fixed convergeuce rates, as shown theoretically in [13]. The physical
interpretation of the asymptotically large diffusivity ratio is that virtually all of the variation

of solution in response to the (fixed) forcing occurs in the subdomain with the lesser diffusivity.

Figure 3 illustrates this l)henoinenon. The contours are kinked at the interface since it is the normal

component of the diffusive flux, cVu, not Vu itself, which must balance on either side. The solution

along the interface is a.symptotically the boundary wdue of zero. The spectral probe method is a

singularly good performer in this limit.

4.4. Sensitivity to Aspect Ratio

Table 1,1 examines the constant diffusion case under aspect ratios ranging from 1:1 (a squat
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] StructurallySymmetric 1 BlockTriangular I

h-' 1I" I T-I IP] s I SP[ D [ Z [

-s..../-¥1 '_1 1 I _ I-51 .....5--/ m l 2 I 51 41
16 / 61 61 _1 51 71 71 71 21 _1 4/
32 I _1 9/ 11 61 9/ 9/ 91 21 51 41
64 II 12 I 6 11 12 13 2 5 4

Table i2: Iteration counts for the step diffusion problem as

a function of mesh parameter for two different preconditioner
structures and five different interface blocks. The ratio of the

diffusion coefficients of tl,e two subdomains is 64.

Structurally Symmetric Block Triangular
- Ratio IP S SP D T IP S SP D

1 9 1 1 5 9 9 2 2 5

4 9 7 1 5 9 9 8 2 5

16 9 8 I 5 9 9 9 2 5

64 9 9 I 6 9 9 9 2 5

256 9 9 1 6 9 9 9 2 6

1024 9 9 1 6 9 9 9 2 6

Table 13: Iteration counts for the step diffusion problem at
a constant mesh parameter Of 1/32 as a function of diffnsiv-

ity ratio for two different preconditioner structures and five
different interface blocks.

T

4

4

4

4

4
4

rectangle with subdomains just two cells high) to 1:2 (a tall rectangle composed of two square

subdomains). Note that the discrete length of the interface, n, remains constant at 63 in all

examples, while heights ml and m2 vary from 1 to 63.

Structurally Symmetric

(lz, 1_) IP S SP D

(1, +) 4 1 1 8
(1,_) 5 1 1 6

(1,_) 7 , , 5
(1,_) 9 l , 5
(1,1) 11 1 1 4

(1,2) 9 1 1 4

T

14

13

12

11

11

8

BlockTriangular
IP S SP D T

4 2 2 8 13

6 2 2 6 10

8 2 2 5 7

10 2 2 5 5

12 2 2 5 4

10 2 2 5 2

Table 14: Iteration counts for the pure diffusion problem

at a constant mesh parameter of 1/64 as a function of as-

pect ratio fox' two different preconditioner structures and five
different interface blocks.

We confirm that S and SP are completely adaptive to __pect ratio in this constant coefficient
problem, which is not true of any other method, including Dryja's. The tangential preconditib_ier

is understandably good when the narrow (more strongly boundary influenced) direction is the

tangential one, a,M poorer when this arSpCCt ratio is reversed. The nonmonotonic character of
IP is interesting, showing that it adapts well to either extreme and is poorest in the balanced
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intermediate case.

5. Conclusions

We conclude by pulli,lg together some overall assessments of the preconditioners tested in the

previous section. Tile interface probe techuique is the most general purpose and robust of the meth-
o(ls. It is always defil,able and adapts well to high lte and extreme aspect ratio, but is nonoptimal

at high h-1 and is occasiollally tile worst metho(I. It does very well in predominantly unidirectional

strongly convective flows. Generalizations to multiple interfaces, multiple components, and inexact

subdomain solves are straightforward, but not t)ursued herein (see [26]).

The spectral method is mathematically the method of choice asymptotically in h -1, where

physically well resolved problems should end up. tIowever, since it is based on a global constant-

coefficient approximation it does not perform well in heterogeneous problems. Furthermore, high

cell Reynolds numbers can cause it to go unstable, and flow fields whose actual values along the

interface differ greatly fl'om their average values are poorly represented. A stabilizing technique

was proposed which could preserve the robustness of the spectral method at high cell Reynolds

numbers, namely selection of an exponent base for D in (3.3) closer to unity than the true [a/c I.

The spectral probe method is as good as the spectral method when W alone is a good ap-

proximation to the eigenvectors of C (i.e., low tangential convection). A D:modulated vqrsion of

spectral probe can be just as effective (and just as vulnerable to strong tangential convection) as

the pure spectral method in a constant coefficient problem. SP adapts better than S to normal
convection variation and it adapts perfectly to piecewise constant heterogeneities in the Jiffusivity.

As a "probe" method, it shares the coding disadvantages of IP.

The Dryja preconditioner is never exclusively the best method, but is as good as either S or SP

in a variable coefficient prol)lem if_ the limit h ---, 0, where the diffusive contributions to A dominate.

However, the extra cost of S is insignificant compared to D, and SP costs only extra subdomaJn

solves in the l)re-processing, so these techniques (suitably stabilized for tangential convection) will

almost always be preferable in applications.
All of the above techniques are relatively insensitive to the choice of the overall preconditioner

structure. The tangential interface preconditioner is an exception, for reasons yet to be explained

theoretically. It is much better under the block triangular form of the overall preconditioner, and

is very competitive with the other techniques under physicMly predictable circumstances, namely

tangentially dominant convection or narrow aspect ratio. It is also simple to code and has been

successfully generalized to multicomponent systems (see [22]).
We note that when exact subdomain solves are performed, the block triangulax form of the

preconditioner, B2, with its one-directional flow of information from the separators to the interiors,

is almost always preferable to the structurally symmetric form B1 in terms of execution time,
since a full set of subdomain solves is sayed at each iteration and the iteration counts are usually

comparable. The structuraJly symmetric form is also obviously useful when A is itself symmetric,

since it then admits preconditioned conjugate gradients rather than GMRES as the iterative solver.

Clearly, a user who understands his problem physically and is willing to customize can do well

by choosing among a variety of interface precouditioner modules, perhaps using different ones on

differently resolved grids within the same overall solution procedure. ]lopes of finding a single "best"

method from among those considered must clearly 1)e dismissed, but the field is still young. It is clear

that general purpose adal)tivity will require sonic fornl of "probing" via subdomain solves; taken to

the limit, one obtains C directly. Such probing has an associated cost comparable to an iteration

step, and must be undertaken conservatively. Future developments which iteratively improve the

interface preconditioning based on accumulated subdomain solve data would be welcome, and so
would more hybrids along the lines of tile spectral probe which incorporate both analytical and

numerical data.
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Abstract

In this paper we present a preliminary report on our work on the tracking of inter-

nal layers in a singularly-perturbed convection-diffusion equation. We show why such

tracking may be desirable, and we also show how to do it using domain decomposition

based on asymptotic analysis.

1 Introduction

In this paper we present the analogue of a shock-tracking scheme for the resolution of an

internal layer and its interaction with an ordinary boundary layer at the outflow. In the

computation of compressible flows at high Mach number there has long been competition

between shock tracking and shock capturing, and it is now generally agreed that both axe

needed. We generallyfind that the number of strong shocks issmall, and they should be

tracked in order to assure accuracy of the solution. For reasons of efficiency,however, the

large number of weak shocks reverberating around the domain should be computed by a

reliableshock-capturlng scheme such as Roe's method [14]or the method of Colellaand

Woodward [7].Shocks are not always the most important features in fluidflows,but the

tracking of such other phenomena isstillfar behind shock tracking. We firstshow why it

may be desirableto track an internallayer,and then we show how such tracking may be

accomplished via domain decomposition.

For the sake of simplicity we consider a specific time-independent, singularly-perturbed,

convection-diffusion equation

a O=u + b Ouu --- e Au -Jr F (1.1)
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on a bounded domain ft in the (x,y)-plane. Here, A denotes the Laplace operator, and e

is a small, positive number. For the moment, we impose Dirichlet conditions u = f on the

boundary aft, but later we sometimes treat mixed boundary conditions. The function f

is required to be piecewise smooth. (We use the term 'smooth' to mean some convenient

degree of differentiability, say C2.) We assume that the coefficients a and b are smooth

functions of z and y on ft. The source term F is assumed to be a smooth function of

z, y, and u. Furthermore, we impose the restriction that la] + Ib[ # 0 in the closure of

ft. This assumption implies that there are no stagnation points, and it greatly diminishes

the complexity of the domain decomposition. Our assumption of semilinearity is much less

restrictive because nonlinear problems are oRen solved via a sequence of linear problems

with variable coefficients. Our discussion does not pertain to shock layers, however, since
they violate the assumption of smoothness of a and b.

Previous work [4:1, [11], [12] on algorithms for (1.1) using domain decomposition based

on asymptotic analysis has treated the special case of b = 0. It is true that a transformation

of coordinates may be used to convert (1.1) to the case b = 0. In this paper we show why

such a transformation is very desirable, and we present an algorithm to carry it out.

The development of numerical methods for (1.1) in the singularly-perturbed case requires

an understanding of the asymptotic behavior of its solutions as e _ 0. We therefore begin
with a brief description of the relationship between u and the solution U of the reduced

equation

acg_U + bO_,U = F. (1.2)

For more details see the books by Chang and Howes [1] and Eckhaus [8]. Equation (1.2) is
easily solved by the method of characteristics,

d__.z_ dy b, dU F. ( 1.3)
ds - a, ds = d'_ =

The first two equations in (1.3) define characteristic curves. It is clear that we cannot

impose the boundary condition U = / at every intersection of a characteristic curve with Off.

Instead, we subdivide Oft into three sets, depending on the direction of the vector (a, b). The

inttow boundary Fx is the subset of Off on which (a, b) points into ft, the outttow boundary Fo

is the subset of Oft on which (a, b) points out of ft, and the tangential boundary FT is the

subset of Oft on which (a, b) is tangent to Off. For (1.3) the boundary condition U = / is

imposed only on the inflow boundary Ft.

It is reasonable to expect to have u _ U for the solutions u of (1.1) wherever Au is not

too large, i.e, wherever u is smooth. Because of the smoothness of the source term F and

of the coefficients a and b, the only mechanism for introducing nonsmooth behavior into the

solution u of (1.1) is through the boundary condition u =/. One obvious difficulty is that

we cannot force U = f on the outflow and tangential boundaries Fo U FT. The resolution of

this difficulty is that there are boundary layers across which u changes rapidly from u ,_ U

to u = f. More precisely, when f is smooth the relation u _ U is true except in the following
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portions of _. There may be what are called parabo//c boundary layers along the tangential

boundary I'r, and there may be ordinary boundary layers along the outflow boundary I'o.

Let us take a moment to explain tile terminology 'ordinary boundary layer' and to de-

scribe its properties. Consider a point P on Fo. In the vicinity of P we may construct a

transformation (a,r) H (z,y)such that the origin (_r,r)= (0,0)is mapped to the point P.

We may further require that the portion of a neighborhood of the origin with tr > 0 is mapped

into ft, so that a segment of the axis a = 0 is mapped onto a segment of the boundaxy I'o.

In terms of the variables a and r the differential equation (1.1) takes the form
q

+ "go. =  (cl + c2O o., + c3O , )+ F. (1.4)

Note that the definition of outflow boundary implies that if cl is chosen to be positive, then

it follows that a < 0. We have seen that we expect to have u _ U away from the boundary

a = 0, while we require that u = f on the boundary er = 0. That is, we expect u to vary

slowly with respect to r but rapidly with respect to a. Let us therefore introduce the scaling

a : e@, r : "? (1.5)

into (1.4). If we formally discard all but terms of the order of l/e, we obtain a reduced

equation - -

aOoV Cl 02V. (1.6)

The term ordinary boundary layer derives from the fact that (1.6) is an ordinary differential

equation. The term exponential boundary layer is also used, because the solution V of (1.6)

is the sum of a constant and an exponential function. Note that because _/cl < 0, this

exponential decreases with increasing _. Note also that in terms of the variable a the rate of

decrease is of the order of exp {-_a/e}, where _ is an average value of [_[/c_. We therefore

expect the width of the ordinary boundary layer to be O(e)..The book by Chang and

Howes [1] gives theoretical justification for all of these heuristic manipulations.

In the vicinity of the tangential boundary FT we use the characteristic curves (1.3) to

define one set of coordinate lines, and we use them as the foundation for a local mapping

(s,t) H (x,y) in the vicinity of a point P on FT. In terms of these coordinates (i.1) takes

the form

i),u = e(c,t O_u + c5 vq,Otu + c_ 02tu) + F. (1.7)

We remark that the definition of flow direction implies that cs > 0. We may require that a

segment of theaxis t = 0 maps onto a segment of the boundary FT and that positive values

of t correspond to points in the interior of f_. Thus, the boundary layer has to accommodate

a rapid transition from u _-, U for t > 0 to u = f at t = 0. Let us therefore introduce the

scaling

s - _', t = _'x/q (1.8)

into (!.7). If we formally delete all terms smaller than 0(1), we obtain the reduced equation_

o,w = c, + F. (1.9)

I
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This equationis parabolic, giving rise to the term parabolic boundary layer. Furthermore,
the thicknessof the boundary layer for (1.9) is O(1) with respect to t'. With respect to t

the parabolic boundary layer is therefore of width O(x/7 ). Again, theoretical justification for

these remarks may be found in [1].

If f has a discontinuity at a point P on rl, then by (1.3) the function U will have a

corresponding discontinuity in f_ along the characteristic curve 7 through P. Similarly, if

the Lie derivative of f along F1 is discontinuous at P, then grad U is discontinuous along 7.

Because u is smooth, the lack of smoothness of U causes u to deviate substantially from U in

a neighborhood of 3'. As in the case of a parabolic boundary layer, if we introduce coordinates

(s,t) derived from the characteristic variable a as given by (1.3), we find that (1.1) maps to

an equation of the form (1.7) and that (1.9) is the appropriate reduced equation. We are

therefore led to the conclusion that such an internal layer is parabolic in nature and that its

width is O(v/7 ). We again refer the reader to [1] for further justification.

In the next section we analyze the behavior of a standard central difference scheme when

there is an internal layer tilted at an angle to the grid, and we show that the numeri-

cal approximation introduces downstream oscillations unless the internal layer is resolved.

Therefore, we must use either a fine grid, an artificial increase of the viscosity e, or a grid

aligned with the layer. Here we are discussing a grid effect, in [13] Hedstrom and Osterheld

showed that the numerical errors for a coarse grid aligned with an internal layer are minimal

even at large cell Reynolds numbers.

In Section 3 we present an algorithm for the construction of an orthogonal grid with

one coordinate direction aligned to the vector field (a,b). This mapping requires the solu-

tion of the telegraphers' equation. In Section 4 we introduce a domain decomposition for

a problem (1.1) with an internal layer and an ordinary boundary layer. In this domain de-

composition the ordinary boundary layer and the internal layer have their own subdomains,

and there is a separate subdomain for the region where these layers interact. In addition,

in each subdomain a separate numerical method is used, depending on the local asymptotic
behavior of the solution.

2 A layer tilted to the grid.

In this section we use a heuristic argument based on the modified equation to show why it is

generally unwise to permit an internal layer not to be aligned with the grid. Specifically, we

show that the standard central-difference scheme has grid effects which are modelled by a

modified equation in the style of Warming and Hyett [16]. See Grifflths and Sanz-Serna [10]

for a more modern exposition on modified equations. We shall see that the solutions of the

modified equation are integrals of Airy functions, multiplied by a decaying exponential. The

oscillations of this Airy function may or may not be completely damped by the exponential ,

depending on the values of a dimensionless parameter. We also derive the modified equation
0
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for the upwind difference scheme, and as may be expected, we find that upwindi_g adds
numerical diffusion.

For the discussion here we restrict our attention to the special case when the coefficients

a and b in (1.1) are constant and the source term F vanishes. Then for convection with

velocity V in the direction (cos 0, sin 0) we have the convection-diffusion equation

V cos 0 0_u + V sin 00_u = ¢ Au.

The reduced equation for (2.1) is

(2.1)

V cos 00,U + V sin 00uU = O, (2.2)

and its characteristic curves are given by

dz d_ff _ V sin 0. (2.3)d--s = V cos 0, ds -

For the discussion here it suffices to restrict our attention to directions 0 _< 0 _< r/4. We

remark that the special case # = 0 of flow parallel to the grid was examined by Hedstrom

and Osterheld [13].

For (2.1) we use a rectangular domain

12 = {(x,y):O < z < 1,0 < y < 1}. (2.4)

Thus, under the conditions that 0 < 0 < lr/4 the inflow boundary is at z = 0 and at Y = 0,

and the other two sides of the rectangle comprise the outflow boundary. On the inflow

boundary we select a point of discontinuity yo, and we impose the conditions

0.5(l+sgn(y-y0)) forx=0,u= 0 for y = O. (2.5)

The discontinuity in the boundary data at Y0 induces an internal layer al0ng:the Characteristic

curve z sin 0 - (y - y0) cos 0 = 0. In fact, the solution U to the reduced equation (2.2) with

boundary data (2.5) is given by

1 1

U - 2 2 sgn(xsinO- (y - y0)cosO). (2.6)
t

In-order Gominimize ordi--nary boundary iayers along the outflow boundary, we impose the

reduced equation (2.2) as boundary condition at x = 1 and at y = 1.

Consider the standard central-difference scheme for (2.1). We impose a square grid on f_

with mesh size h, and we define the shift operators

T,v(z,y) = v(x. + h,y), Tuv(z,y) - v(x,y + h). (2.7)
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With this notation the central-difference approximation to (2.1) is

asin____LV (Tv _ T_ 1)v = e Dr,V 2hC°Stt(T_ - T_-1 )v + 2h (2.8)

where D denotes the discrete Laplacian

= _-_2(T_ + T_ + T: 1 + T_-_- 4I).D

On the inflow boundary I'I the boundary conditions for (2.8) are (2.5). On the outflow

boundary ro we use an upwind discretization of (2.2).

The modified equation for (2.8) is best written in terms of the rotated coordinate system

aligned with the flow direction

s = z cos tl + (y - Y0) sin 8,

t = -z sin 0 + (y - yo) cos 8.
(2.9)

We also introduce scalings of s and t in order to derive a modified equation in dimensionless

form and to identify the pertinent parameters. It happens that for (2.1) or (2.8) on the

halfplane z > 0 there is no natural length scale in the direction of the flow (the s-direction).

One may as well use a length scale L = 1. For the rectangular domain f/defined in (2.4) it

is reasonable to take L to be the width of f_ (L = 1) or the width of f/ in the s-direction

(L = sec 0). We shall see that the natural scalings for the modified equation corresponding

to the central difference method (2.8) are

8 = Lo',

t--:'r
(2.10)

Furthermore, the important dimensionless parameters for (2.8) are the cell Reynolds number

hV
Rh = -- (2.11)

and the degree of streamwise resolution

h

3': 7" (2.12)

In terms of these parameters the modified equation for (2.8) is given by the following theorem.

Theorem. Suppose that 0 < 8 < _/4. Suppose also that 7 << 1 and that 3' << R_ <<

1/7. Then the modified equation for (2.8) is

O"v:c92v - sin(48)"'/2R3/20Z'rV+ (_ +24" s "_', +"yRh(3 cos(40)))0_v. (2.13)
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Remarks. The restriction that 7 = h/L << 1 is reasonable for numerical computations,

since we would want features in the streamwise direction to be resolved. The condition that

<< Rh << 1/7 is also ordinarily satisfied in computations. We have written the modified

equation in the form (2.13) in order to provide uniformity as sin(48) --, 0. The grid-induced

oscillations appear only when sin(40) _ 0 and when Rh is moderately large. (Remember

that we require Rh7 << 1.) Under the condition that Rh sin(40) is bounded away from zero,

the modified equation (2.13) takes the simpler form

In (2.14) the parameter

O_,v = O_v sin(240--_)71/2R_/2 0_v. (2.14)

sin(40) 1/2R_/2
/_ = _7 h (2.15)

measures the importance of the grid-induced numerical dispersion relative to the physical

diffusion, and no numerically induced oscillations will be observed if fl is sufficiently small.

For boundary data v : sgn(r) at r = 0 the solution of (2.14) may be expressed in terms of

the Airy function, as is shown by Chin and Hedstrom [3]. In fact, a Fourier transformation

with respect to r shows that

1 1v(o.,r) : _ + _-¢_ i2rw exp {iflo.wzo.w'- + irw} d_. (2.16)

The reference [3] also provides figures and tables of the integrals (2.16) for various values

of ft. The upshot is that whether or not there are oscillations depends on a parameter

2o.1/3

- (2.1r)

If a > 2_ the diffusion is dominant, and there are no oscillations. For a < 2, however, there

is a sequence of damped oscillations below the layer (r < 0). Because a is an increasing

function of o-, as we proceed downwind g increases and the diffusion eventually removes the

oscillations.

....N0te _wit-il regard to the applicability of the modified equation that the internal layer is

many grid cells wide and that the oscillations have wavelengths spanning many grid cells.

This behavior makes the modified equation applicable, in that the derivation of a mbdified

equation is based on the assumption that the numerical solution is smooth relative to the

grid. The user of modified equations must always keep in mind that they are utterl_ useless

in predicting variations in the numerical solution on the scale of 2 or 3 grid sizes or shorter.

Finally, we also remark that the upwind difference scheme

cos 0 sin 0

Y----ff--(I- T[l)u + Y--ff--(I- T_i)u = e Du

with the scalings (2.10) has the modified equation
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with

al = 1 + _sin(28)cos ({- 0),

a2 = _+ 4-_s(3+cos(48)+24(cos sS+sin 38)).

o

The most significant numerical viscosity added by the grid effect is the deviation of ax
from 1. •

Proof of the theorem. The idea of the modified equation is to make an ansatz that

the solution of the difference scheme is smooth enough to be represented by a small number

of terms of its Taylor expansion and to use this expansion to identify a partial differential

equation which approximates (2.8) more closely than the original equation (2.1) does.

Thus, we begin with the assumption that some smooth function v is a solution of (2.8).

In this case the word 'smooth' is taken to mean that we may use Taylor approximations such

as

for the terms in (2.8).

h z h a h 4
(2.18)

That is, we choose to neglect terms in the Taylor series approximation to (2.8) of order

h 5 and higher. We therefore obtain the equation

h20_v)h2 0_v) + Vsine (Ovv + vV cos 8 (Oxv +

h' ,_,. O_v)) .= e (O_v + O_v + -i-i_v;,v +

The rotation of coordinates (2.9) then gives

Vh 2 eh 2

VO.,, + --_--L3[v] = 40._v + 0,_v) + -_L_[v]

with

_3 sin(4O)O_&v+3 sin2(2O)O.O2tv+ ¼sin(4O)O_v,Lz[v] = ¼(3+ cos(40))0_. _
La[v] = _'(3+ cos(4O))(O.%+ O4tv) - sin(4O)(O3.0tv- O.O3tv) + 3sin'(28)O2.02tv.

(2.19)
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Becauseweare interestedin the effectsof the internal layer, we expectderivativesof v

in the t-direction (perpendicular to the layer) to be significantly larger than derivatives in

the ,-direction. The scalings (2.10) are selected to balance the terms _,v and at2v in (2.19).

Thus, upon substituting (2.10)into (2.19) and dropping terms smaller than O(TRh), we
obtain

7 2 7Rh(3
0_,, = 0_,, - fl 0_,, + R-_O_, + --_-, + cos(40)) 0_v (2.20)

with _ as defined by (2.15).

The inexperienced user of modified equations may expect (2.20) to serve as a modified

equation for (2.8). We cannot use it because the term invoiving_vrenclers (2.20) unstable to

high-frequency perturbations. The use of such a modified equation would predict numerical

instabilities where there are none, and it is an instance of a modified equation not conforming

to the difference scheme for phenomena of short wave length. The term 0_v appears in (2.20)

because we stopped the Taylor expansion (2.18) at 0_v, and we went that far because the

coefllcient_ of 0_v_n (2.20) is'Zero when sin-(4#) =_0_ _That is, We-must re_ace 0$v by

something reasonable but harmless when fl is near zero, and for other values of fl it need

only be something harmless. Because O,,v _ O_v when fl _-, 0, the substitution we make to

render 04,.v harmless is that O_v ._ O_v. In this way a high-frequency instability is converted

into an increase of dissipation in the streamwise direction, and it produces our modified

equation (2.13). (This trick was also used in [13] in the special case 0 = 0.)

Remarks to mathematicians. The above argument contains some sleight of hand.

In particular, the domain fl was replaced by the halfspace s > 0 or, equivalently, a > 0.

This change removes any ordinary boundary layer which may be present at the ohtflow.

In addition, boundary data for (2.13) are to be applied at the rotated boundary s = 0.

We expect these distortions to introduce discrepancies only near the point of discontinuity

(z,y) = (0,y0). In particular, it appears from our computations that there needs to be

a slight shift of coordlnateS[ See the comments Concerning Pig. 1 below' We have also

not shown that the solution:of the modified equation (2.13) bears any resemblance to the

solution of the difference scheme (2.8). Such a proof would probably proceed as in [13] with

the replacement of ft by the halfspace z > 0, followed by a Fourier transformation of (2.8) in

the v-direction. The modified equation (2.13) shows that the canonical form of the integral

representation of v is

i /_'_ f(w) {ia3w3 a2w_v(a,v) : _ + --exp - + ia,w} dw (2.21)i2rw

with f and the aj dependent on a and r. Furthermore, the integral (2.16) indicates that

f ,._ 1, aa _ fltr, az _ a, and a_ _ r when a >> 1 and Iv[ << 1. The integral (2.16) derived

from the modified equation (2.14) is merely a nonuniform asymptotic approximation which

is valid when ]r I << 1, cr >> 1, and when fl is bounded away from zero. We see from the form

of (2.21) that a uniform asymptotic estimate would require investigation of the interaction of

two saddle points and a pole. For the case when sin(40) = 0 the situation is simpler because

!
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a3 = 0 and there is only one saddle point and a pole. Uniform asymptotics for 0 = 0 are

presented in Hedstrom and Osterheld [13].

A computational example. In our computations to illustrate these oscillations we

located the point of discontinuity at y0 -- 0.25, we chose coemcients

Vcos0 = 2, Vsin0 = 1, e = 0.002,

and we used a mesh size of h = 0.02. This gives a cell Reynolds number of moderate size

Rh = 10V_, and with L = 1 it gives 7 = 0.02. The scaling (2.10) is therefore _ _.

0.0946, and the value of fl in (2.15) is fl _ 0.598. The cross section at z = 0.8 is shown in

Fig. 1, where the solutio, to (2.8) is shown as a solid curve and the Airy integral (2.16) is

given as dashes. We must admit that in order to obtain such a good match of the curves,

we had to shift the jump for the Airy integral from y0 to y0 + h. This could be because the

Airy integral applies to the rotated coordinate system (s, t) given by (2.9). It shoul d also be

noted that there is a phase difference between the two curves in the oscillatory region. This

is a well-known deficiency of modified equations, and it results from the nonuniformity of

the asymptotic approximation. At the point (a:, Y) = (0.8, 0.6) near the overshoot the value

of the parameter c_ given by (2.17) is a _ 1.294. We have oscillations because a < 2.

The numerical method we used to solve (2.8) is a combination of ideas from Elman

and Golub [9] and from Chin and Manteuffel [6]. As in Elman and Golub, we introduce

a red-black ordering on the grid points and do a cyclic reduction to obtain a nine-point

scheme on the black grid points. This reduction produces a matrix much better conditioned

for iterative methods. The iterative method used by Elman and Golub is point Jacobi,

mostly because they impose no constraints on the direction of flow. In our example the

flow is one-directional, so we follow Chin and Manteuffel in using fine Gauss-Seidel with

fines transversal to the flow, starting at the inflow boundary and marching downstream. We

find that this scheme converges very rapidly, with the greatest speeds at high cell Reynolds

numbers. (Perhaps, we should reiterate that the point of this section is to show that rapid

solution of the matrix equation should not be the primary objective--its solution is a poor

approximation to the solution of the differential equation when the parameter _ in (2.15) is

large.)

Let us remark that we have also solved (2.8) in a version with a discrete approximation

to Neumann outflow boundary conditions

0xu=0 forx=l,

O_u=O fory=l. (2.22)

We found this boundary condition to be satisfactory only for small cell Reynolds number,

Rh < 5. Otherwise, there are additional small oscillations with period 2h induced by the

mismatch at the outflow boundary x = 1.
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3 Curvilinear coordinates.

In this section we permit the coefficients a and b in (1.1) to depend on the position (z,y),

and we present a numerical algorithm for generating an orthogonal coordinate system (a

chart) aligned with the given vector field (a, b). Our coordinate system is derived from the

characteristic curves. We remark that a somewhat different coordinate transformation based

on characteristics was given by Chin et M. [5].

We again assume that the vector field (a,b) has no stagnation point, so that ]a] + [b] is

bounded away from zero for all (z,y) in ft. For purposes of constructing the mapping, it

is convenient to do an initial scaling so that a 2 + b2 = 1. One of our goals is to set up a

mapping (s, t) _ (z, y) such that s follows the flow in the sense that there exists a positive
function ¢ for which

O. = ¢(aO= +bOv). (3.I)

Because the vector (-b, a) is orthogonal to (a, b), the orthogonality requirement (our second
goal) amounts to the condition

cgt = ¢(-bOx + aOu) (3.2)

for some positive function ¢. In a moment we show that the scale factors ¢ and ¢ are not

arbitrary.

In part, the construction of such a mapping is easy, because it is easy to integrate (3.1).

All that is needed is to pick a convenient starting point (zo, V0) and to integrate the system

dig

ds -a¢' ig=zoats=O,
(3.3)

_,d____= be, Y = Y0 at s = 0.
ds

This gives a curvilinear coordinate line in ft corresponding to a constant value of t. The

image of a line s = constant may be obtained similarly by integrating

dig

dt -be, z ig0 at t = O,
(3.4)

----_ = a¢, Y = Yo at t = O.
dt

We still must ensure global consistency as follows. Let us traverse the edges 'of the

curvilinear rectangle So < s < sl, to < t < tl, and we assume that this rectangle is contained

in ft. Denote the image of (s0,t0) as the vertex A. Suppose further that we integr_.te (3.3)

from So to sl, arriving at the vertex C. We then integrate (3.4) from to to tl and arrive

at the vertex B opposite A. Let us now reverse the order by first integrating (3.4) from to

to tl to arrive at the vertex D and then integrate (3.3) from So to sl. Can we be certain

that we again arrive at the vertex B? It happens that this global consistency question has
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beenanswered[15], and that what is required is the vanishing of the Lie bracket [0,, Or] =

a.O,- &no.

It is easy to see by a short computation that the vanishing of the Lie bracket [0o, O,] is

equivalent to the system of partial differential equations

O0(a¢) = O,(b¢),

o.(b¢) : -o,(a¢). (3.5)

Upon differentiating the products in (3.5) and solving for 0o¢ and ore, we find that a

necessary and sufficient condition for consistency is that

(a 2 + bS)O°ll, = ¢(aOtb- born) - d2(aOoa + bOob), (3.6)
(a' + b')i)t¢ = -¢(aOta + both) + ¢(bO, a - aaob).

Note that if (a, b) has been scaled so that a 2 + b2 = 1, then (3.6) takes the simpler form

0°¢ = ¢(a Orb -- b Ota),

Ore = ¢(bOoa - aO°b). (3.7)

We recognize the system (3.7) as the telegraphers' equation, written in terms of Lie

derivatives along the characteristic curves. Therefore, all that is needed for its solution is to

prescribe values ¢ = 1 at t = 0 and ¢ = 1 at s = 0 and to march in the 8 and t-dlrections

concurrently.

It should be emphasized that theoretical questions remain for this grid-generation scheme.

In particular, there is no guarantee that the solutions ¢ and ¢ will be positive at all points

in ft. This is important in that the Jacobian of the transformation (3.3-4) is given by

J = (a s + b2)¢¢. We required at the outset that a s + b2 be bounded away from zero. Thus, if

we are to maintain a nonzero Jacobian, we must take special measures whenever it _aappens

that ¢ < 0 or ¢ < 0. One possibility is to back up and put a boundary on this local chart.

We could then initialize a new chart and continue.

4 Domain decomposition for an internal layer.

In this section we present a computational example which uses domain decomposition to

resolve an internal layer. At this point we have not yet implemented the algorithm described

here, but the final report will have computations. In our algorithm we first identify the

internal and boundary layers, and we then set up a domain decomposition to segregate

them. The domain decomposition is carried out with overlapping grids using the tools of

Chesshire and ttenshaw [2]. We have added the modification that in some subdomains we

use the grld-generation algorithm of Section 3.
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As our domain II we use the square0 < z < 1, 0 < V < 1, and on _] we consider the

convection-diffusion equation

(i + x)Oxu + (1 - y)O_,u = eAu. (4.1)

As boundary conditions for (4.1) we prescribe u = 0 on the bottom of 12 (y = 0), u - 1 on

the left-hand edge (x = 0), u = 1 on the top (y = 1), and u = -1 on the right-hand edge

Note that in (4.1) we have chosen coefficients so that there is no turning point in 12. That

is, we have [1 + z[ + ]1 -y[ bounded away from zero in ft. Note also that by the discussion in

Section 1 the inflow boundary ri consists of the bottom y = 0 and the left-hand side x = 0

of the square ft. Furthermore, the top of the square y = 1 is a tangential boundary I'T, and

the right-hand edge x = 1 is an outflow Fo. The reduced equation is
i

(1 + z)a:,V + (1 - y)a_,V = 0, (4.2)

and its boundary conditions are imposed on the inflow boundary FI. It so happens that

we can write down a formula for the solution U of (4.2), although this is not necessary for

our domain-decomposition algorithm. The characteristic curves for (4.2) are the hyperbolas

(x - 1)(y + 1) -- const. Thus, the solution of the reduced equation (4.2) is

1 if y > x/(x + 1),U= 0 ify<x/(z+l).

This gives us an internal layer Mong the hyperbola y = x/(x -k 1) and exponential boundary

layers at the outflow boundary x = 1. It happens that we imposed boundary data along

the tangentiM boundary FT such that no boundary layer resides there. If there had been a

boundary layer along FT, we could have modified the domain decomposition described below

so as to include its effects.

As the problem is stated, we need the following subdomains: (1) a square B of diameter

O(e) at the origin to cover the birth of the internal layer, (2) an internal-layer region

z-- {(,,,,y):ly- + 1)1< cV }

with O(e) < x < 1 - O(e), (3) three outflow boundary layers O, one above the internal layer,

one below it, and one interacting with it, (4) an outer region 7t above the internal layer on

which u _ 1, and (5) an outer region 7-/below the internal layer on which u _ 0.

In the two outer regions 7-_ we use a coordinate system derived from the characteristics, as

described in Section 3. In the internal layer 2" we use a parabolic coordinate system imposed

on the characteristics. (More precise details will be given in the final report.) Finally, in the

birth B and boundary-layer regions O we use the methods given in the papers by Hedstrom

and Howes [11] and [12]. The iterations are performed in the order: (1) the outer regions "/-/,

(2) the birth region B, (3) the internal layer Z, (4) the outflow boundary layers O. The

iterative schemes in the subdomains are as in [11] and [121.
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Abstract

Interface conditions for coupling the domains in a physically motivated domain

decomposition method are discussed. The domain decomposition is based on an

asymptotic-induced method for the numerical solution of hyperbolic conservation laws

with small viscosity. The method consists of multiple stages. The first stage is to

obtain a first approximation using a first-order method, such as the Godunov scheme.

Subsequent stages of the method involve solving internal-layer problems via a domain

decomposition. The method is derived and justified via singular perturbation tech-

niques.

1 Introduction

This is a report on a preliminary investigation of conditions for the interfaces between sub-

domains when solving partial differential equations. The analysis for the method is a combi-

nation of asymptotics and numerical analysis. The result is a physically motivated domain

decomposition method where different partial diffcrential equations may be solved in different

domains. Since different modeling equations are in different subdomains for the same prob-

lem, we call this heterogeneous domain decomposition. The numerical treatment of interface
conditions between the subdomains must be addressed. The approach here is to examine

the physics reflected in the numerical method used within the subdoraains and guarantee

that this same physics is reflected in the interface treatment.

The method is best suited to partial differential equations that contain regions of singular

behavior. A typical situation is when there are narrow regions where the variation in the

solution is large. Such regions are called boundary layers or transition layers depending on

whether they are near a boundary or inside the interior of the domain. Examples of such

situations are laminar flow of a slightly viscous fluid or combustion with high activation

energy. Classical schemes applied to these types of situations generally fail to correctly

describe the behavior inside the layers. This difficulty is overcome by utilizing asymptotic

analysis that reflects the physics of the problem. Here we present and motivate the domain

decomposition method, but the details of the analysis are presented elsewhere [7].

There have been some intersting results regarding interface conditions for heterogeneous

domain decomposition where Euler equations are coupled with Navier-Stokes equations [9],

tResearch conducted at ICASE, NASA Langley Research Center, Hampton, Virginia, supported by NASA

ContractNo. NASI-18605.
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and where viscous and inviscid equations where coupled [2, 4]. Many of the basic ideas

relating to asymptotic analysis and numerical methods that utilize domain decomposition are

found in [10]. These ideas were incorporated into a parallel numerical method in [5]. Specific

application to conservation laws have been developed in [1]. There are other important' works

in these areas-these references are only a small sample of the literature.

The coupling of the problems in the subdomains is based on a balance of the flt_x across

the interface. Each subdomain is treated as a control volume, and the flux into and out-of

the control volume is balanced. This is similar to the flux-differencing methods used within

the subdomains. The result is a numerical method with no visual artifacts. This numerical

treatment of the interface is an extension (to heterogeneous domain decomposition) of the

work by Osher and Saunders [11]. We expect extension of this method for the interfaces to

work for two dimensional heterogeneous domain decomposition, since it was used for a two-

dimensional homogeneous domain decomposition method that utilizes adaptive refinement

N.

2 Problem Setting and Domain Decomposition Mo-

tivation

Consider the Cauchy problem

ou oF(u)= v(u).
u(_,0) = v(_) for _ e m.

for (_,t) e a
(2.1)

Here the solution U C IR" is a vector-valued function with n components, the domain is

12 = IRx]0, T[ and e << 1 is a small parameter.

We assume that V is piecewise smooth. We also assume F and P are regular functions

of U. We suppose that P is a suitable viscosity matriz [3] for the shocks of the associated

inviscid problem

{ °_° °F(V°) 0 for (_,t) C a
-°-V+ = (2.2)

U°(m,0) = V(m) for x C fit.

Namely, a shock-wave solution to (2.2) can be obtained as a limit of progressive wave solutions

of (2.1). Problem (2.1) is a parabolic-hyperbolic singular perturbation problem driven by

(2.2).
The regions where the solutions to the associated inviscid problem fail to be good ap-

proximations to the solution of the full problem are the regions where we use a subdomaJn

to localize the behavior of the solution. Thus, we have two types of domains. The first type

of domain is located where the regular expansion

v::_.r= uo + ,u 1+ ,,u 2+... . (2.3)
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for U is valid and the solution is smooth. The second type of domain is where the solution

exhibits singular behavior and the regular expansion for U is no longer valid.

We substitute li__ ter in the differential equation of (2.1) and use identification in e to

obtain that U ° must be a solution of (2.2). The inviscid problem (2.2) has many weak

solutions; it is possible to uniquely define U ° by considering the problem that governs U 1

[7].
The failure of the regular expansion is reflected by some of the terms in the PDE governing

U ° being significantly larger than other terms. Typically, the term RHS(U °) will become

unbounded as the small parameter e tends to zero. For finite e, a large RHS(U °) would

indicate that the region should be covered by a subdomain in which we apply techniques

designed to capture the singular behavior of the solution. We describe how rouse a measure

of the numerical approximation of RHS(U °) to place the subdomain boundaries in a later

section of this manuscript.

2.1 Problem in the Singular Region

So that we can handle theregions wl!ere sol_ttions to problem (2:1)conta_'n sho_ksthat

interact with other singularities we use a brute force approach that will capture all possible

behavior of the solution. The approach is to use the coordinate system

x t
_ _--, T_----

in the regions with shocks. We will present and motivate the domain decomposition method,

but the details of the analysis are presented elsewhere [7, 6]. Under this transformation the

PDE that governs the solution becomes

0 (:4)O p(/)). (2.4)0--7+ . F(t3) =

where U(_, 7-) = V(z,t). This is the equation that is solved in the singular region. ::

This scaling is most appropriate for regions where shock-layers are interacting with other

non-smooth physical phenomena. Because the transformation a priori resolves all of the

physics. This is reflected by all of the terms in (2.4) having magnitude of order unity or

smaller. In general, this method is overkill, similar to using a shotgun to dispatch a housefly.

We choose to study on_ly this brute-force approach so that we concentrate on one type of

interface. Other treatments that include more of the physics are possible [7]. They can result

in more efficient numerical methods than the one discussed here.

The boundary coniiih-o-n- at the interface is to impose that the viscous equation from

problem (2.1) be the model at the interface between the subdomains. The computational

implications of this condition is discussed in §4.
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3 Conservative Discretizations

It is important for the discretization techniques to satisfy a discrete conservation relation.

One can verify that if the discretizations can be written in the form

Z k+l = Z k __ _(hi+l/2 -- hi_l/2) ,

then the method satisfies the appropriate conservation relations. Here we use flux differencing

methods based on a finite-volume formulation of tile problem.

We will discuss the differencing method for the outer region subdoinain where the solution

is smooth first. Let W0 be the discrete numerical approximation to U °. We use a first-order

finite-volume method. This method assumes that the value W, k is an approximation to the0,1

average of the desired function U ° over the spatial interval ]xi-1/2, xi+t/2] at time t = kAt.

The method can also be categorized as a flux differencing technique since the general form

of the discrete analogue to the original PDE can bc written

[¢V k+i Vv_f )t(Fk+l/2 -ko,i = o,i- -/'i-,/2) (3.5)

where

1, k+1/2 kO,it 1/2)" .

Here the fluxes are based on the first-order Godunov scheme; thus, the flux fj for com-

ponent wj of W0 is approximated as

_ k1 + - (3.6)-5

where a+ is an approximation of the upper bound on the local speed of sound.

The discretization that is used for the numerical method in the shock-layer region is

a modification of the treatment used for the outer region. We have used a coordinate

transformation that creates a smooth problem for this subdomain. Let l_r0 be the first

order numerical approximation to U. Let 1_ k be an approximation to the the average of
0,;

the desired function 0 over the spatial interval ]_L1/:,_:+_/2] at time r = /cAr. The flux

differencing technique is

v_r_+i __ _r?_ _(f_-t-'/2 i i__1/2) (3.7)

where

(0 _V?+ 1/2

The particular discrete form for each COml)onent of the flux is obtained using a formula

similar to that of Equation (3.6).

We are not restricted to this particular numerical discretization; however, the numerical

treatment of the interface will possibly need to be modified for different numerical treatments

of the problems within the subdomains.

One can verify that the flux differencing methods given above satisfy the discrete con-

servation relation. What remains is to formulate the conditions at the interface so that the

relation will be satisfied globally.
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4 Treatment of the Interface

Using the shock-layer coordinates with A_ = CAx will result in C/e point_ in the shock-

layer for each point in the outer region. Here, a typical value for e is .01; hence, this results

in a radical grid refinement for the shock-layer. For the numerical method, since there will

be many grid points in the shock-layer for each point in the outer-region, we will refer to

the shock-layer grid as the refilled grid, and the outer region grid will be called the coarse

grid. The temporal coordinate will also be stretched, resulting in the situation outlined in

Fig. 4.1.

xi_l/_ x_+:/_. ::

time

tk

_k-1

_3/2

7"K_ 1

T1

space -_

Figure 4.1: Interface at the left boundary

4.1 Flux Treatment of Interface

As in [11], we view the interface treatment as a predictor-correcto: method on the coarse

mesh. We start at time t = t k. The coarse-grid values arc defined everywhere, and are the

average of the corresponding fine-grid values when the coarse-grid volume element is within

the fine-grid region.

The steps for the first order method are outlined in Algorithm 1 below. At time step

k, the shock-layer has N(k) points in the interior of the region and a ghost point on each

i

w -
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For k == 1, ....

I. March W0 from tk-1 to tk based on scheme (3.5).

II. Detection.

A. Compute the residual on tile coarse mesh.

B. Mark regions that should be refined. (Let this be the region between x_+,-t/2

and ;gin+l/2.

A. Modify shape of refined region.

III. March the shock-layer region from tk to tk+t. For k = 1 to K

1. Form the initial condition in newly refined regions.

2. Use linear interpolation to compute the ghost values of 12¢o_

3. March l_0 to rk+ t based on scheme (3.7).

IV. Project l_0 onto W0.

V. Correct values W_L and W_R based on the shock-layer fluxes.

ALGORITHM 1 Numerical Method.

side of tile refined region. There are a few points that need to be clarified in this algorithm.

The interpolation to obtain ghost values (i.e. - _W0,o) is bi-linear interpolation based on 1_._-10,I

W_LI_I and Wok,L_S . The initial condition for this problem is derived by imposing mass

conservation; thus, the fine-grid values are all initialized to the value of the solution at the

cell center. Improvements in the initialization procedure is a subject of further research.

The correction of the coarse-grid values in Step VI is to use the same discretization that

was used when the values were originally computed, but to modify the fluxes at the boundary

of the domain to reflect what happened on the refined region. That is, to update W_, we
/_,k - I

F_,+t/2 with the formulawould use scheme (3.5) with (3.6) for -L-t/2, but we would compute _,-1

k-1 1 K-1
=-- /_6"

_.=0

One may verify that this results in a globally conservative method. Also, this treatment

of the boundary is consistent with the boundary conditions imposed in §2.1. Namely, this

treatment of the interface is consistent with the viscous equation from problem (2.1) being

the model at the interfacc betwccn the subdomains.

4.2 Dirichlet Treatment of Interface

As a comparison to the flux boundary condition, we also implemented the heterogeneous

domain decomposition method with dirichlet boundary conditions at the interface. This
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is an interesting comparison, since there was little difference in the results when the two

different treatments of the interface were used (this is discussed in §6).

5 Detection of Interface

We present the detection of tile interface for the sake of completeness. Detection of the

interface based on computational data results in a method that can have a different location

of the internal-Iayer su'bd01nain for each time step. The d_etection _or tt_e numer_caI method

is based on obtaining an approximation to

OWo OF(Wo) O (P(Wo)OWoi __
O-----i-+ Ox c-g-_\ a_: /

This term is the residual from using W0 as an approximation to the solution of (2.1). The

residual is of magnitude O(Az -1) in either a shock layer or in a zone where a shock interacts

with other singularities.
D2 .... -.

It is also possible to use an approximation of the viscous term -_Wo(.,tK) to localize

some of the singularities. For example, this viscous term wiIlbe of order O(Az, -1) in a

shock layer or in a zone of interaction. This method is not as reliable as using the resldual_

however. Other types of behavior can be located and identified using these techniques [7].

6 Appiicati0n to the Isentropic Gasdynamic Equa-

tions • _

In this section we examine the interface treatments on the viscous isentropic gasdynami¢

equations _ _
Ou Ov

-- - 0

Ot Ox

o(ou)
Here u is the inverse of the density and v is the velocity. These equations are obtained from

the conservation of mass and momentum in Lagranglan coordinates assuming that u is equal

to the pressure raised to the -1/Tth power (the perfect gas law). The experiments were run

with 7 = 2.2: ....

The problem is a right-traveling shock interacting with and a left-traveling rarefaction,

bothof WMcheminatefrom the origin. _An anidytic self-similar solution-a-rarefaction( _ _ emi-

nating from the origin) to the inviseid isentropie gasdynamic equations is given by

(6.8)

5O
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-2-r'it,+') (_)"-'_+,v(x,t) _ _- 7 + con_t. ' (6.9)
An initial condition with a shock and rarefaction eminating from the origin is constrncted by

connecting left values to middle values with a rarcfi_ction. The middle values are connected

to the right values with a shock. Thus, the initial condition is given by

f UL, forx < 0
u(x, O) (6.tO)/ UR, forx >_ 0

where

VL, for x < 0
_)(x, O) (6.11)t Va, for z >_0

UL = 1.4709, Un = 2.5000, VL = 1.0388, VR = 0.8050.

The middle value of the solution between the shock and rarefaction is (UM, VM) = (1.973, 1.356).

We remark that the middle values were was chosen using the Rankine-Hugoniot condition

vM- v. 11u7_- llU?_
UR--UM VR-V_

We expect the the viscous perturbation to have little or no effect on the speed at which

shocks and rarefactions travel; thus, we will compare the viscous solutions to the solutions

given above.

The method was run with e = .01. The discretization parameters for numerical solution

in the outer region have CFL number At/Az = .1, and A:c = .02. The discretization on

the scaled coordinates inside the shock-layer is based on A_ = .1, with the CFL condition

AT/A_ < .025 and the stability condition Ar/A_ 2 < .1. These values are well within the

limits imposed for the stability of the finite difference methods.

Figure 6.2 depicts the evolution of the internal-layer subdomain when the two differ-

ent boundary conditions are used. The errors generated by using the dirichlet boundary

condition when the rarefaction is trying to exit the internal-layer subdomain result in a

larger computed second derivative, and the detection scheme kept the rarefaction inside the

internal-layer much longer. The solution projected onto the coarse grid at the end of the

computations showed little difference between the two methods (Fig. 6.3). The primary dif-

ference is the visual artificats at the boundary of the internal-layer subdomaln at the point

when the rarefaction is exiting the subdomain (Fig. 6.4).

7 Conclusion

Clearly the best interface condition is the flux-based treatment; however, the dirichlet bound-

ary conditions did not induce as many errors as expected. One explaination of the lack of

errors may be that the internal-layer subdomain boundary moves fast enough that waves

propagating out of the internal-layer subdomain are allowed to pass across the bt)undary

by the oscillations in the boundary. More studies are planned with the goal to identify the

precise nature of the errors associated with the interface treatments.
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Figure 6.2: Evolution of the Internal-layer Subdomain.
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Figure 6.3: Solution on Coarse Mesh at t = .24.
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One-Way Nesting for a Primitive Equation Ocean Model

D.W. Blake

Naval Oceanographic and Atmospheric Sciences Research Laboratory

Stcnnis Space Cc,,ter, MS 39529-5004 /k/ _ Z'7//- 7_,_ _¢E_

Prognostic numerical models for atmospheric and oceanic circulations require initial

fields, boundary conditions, and forcing functions in addition to a consistent set of par-

tim differential equations, including a state relation and equations expressing conservation

of mass, momentum and energy. Depending on the horizontal domain to be modeled, the

horizontal boundary conditions are either physically obvious or extremely difficult to specify

consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions

are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean

are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification

of the tangential velocity depends on the mathematical treatment of the horizontal viscous

terms. Limitations imposed by computer capacity and cost, as well as research interests,

have led to the use of limited area models to study flows in the atmosphere and ocean.

The limited area models do not have physical horizontal boundaries, merely numerical ones.

Correctly determining these open boundary conditions for limited-area numerical modeIs has

both intrigued and frustrated numerical modelers for decades.

One common approach is to use the closed or solid wall boundary conditions for a limited-

area model. The argument given for this approach is that the boundary conditions affect

flow near the walls but that none of these effects are propagated into the interior. Therefore,

one chooses a big enough domain that the central region of interest is not corrupted by the

boundary flow. Research in progress to model the North Atlantic circulation (J. D. Thomp-

son, private communication) vividly illustrates the pitfalls of this approach. The area covered

by the Atlantic Ocean model lies between longitudes 0 and 100W and between latitudes 60N

and 20S with the continental boundaries in place as appropriate and the'open water bound-
0

aries artificially closed. Two model runs are compared: (A) The southern boundary at 20S

between latitudes 0 and 40W is artificially closed and (B) the same boundary is specified

as open with an inward transport of 15 Sv (determined from a global model with the same

physics) uniformly spread across the boundary. Comparison of runs A and B shows sig-

nificant differences. For example, the maximum eddy kinetic energy (divided by the mean

density) is 700 cm2/sec 2 in run A while that for run B is 1900 cm2/sec 2. The Gulf Stream

in run B detaches from the eastern boundary of the United States at the correct latitude

of approximately 40N while the Gulf Stream in run A never truly flows along the eastern

boundary of the United States at all. The circulation in the tropics and along the eastern

boundary of South America also differs radically between the two runs. There are regions

in the two runs where there is no difference but such regions are small and of little interest,

i.e. they have very low eddy kinetic energy. These studies and others indicate that the inte-

rior flow of limited-area models can be dramatically affected by the incorrect use of closed

boundary conditions.
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A second common approach is to "nest" the limited-area model inside of another nu-

merical model which covers a much larger domain. The outer domain model then supplies
the boundary conditions at the open boundaries of the inner domain or limited-area model.

As an ezample, the North Atlantic model described above could have boundary information

supplied by a global ocean model which has physical, solid wails or closed boundaries. The

outer domain model usually has a larger time step and coarser mesh size than the inner

domain model. If the inner and outer domain models are described by the same differen-

tial equations and assumptions, then the nesting problem is homogeneous. Otherwise, the

nesting problem is heterogeneous. The nesting is described as two-way if information passes

from the outer domain to the inner domain and vice-versa. If the outer domain model passes

information to the inner domain but the inner domain information is not passed into the

outer domain, then the nesting is one-way. Only one-way nesting with a homogeneous sys-

tem of numerical models is presented here although future work with two-way (or coupled)
nesting and with heterogeneous model systems is planned.

In general, nesting involves two separate problems. The first is the interpolation of

information from a coarse mesh, outer domain, to a finer mesh, inner d_omain. The second

is the modification of the information supplied by the outer domain before it is applied to
the boundary of the inner dornain. Much of the research done to date has not dlstlng_shed
between these two separate problems. =....... :

Linear interpolation is the easiest interpglation method to use. However, linear interpo-

lation alters the long wavelength information contained in the original fields and adds short

wavelengths that are not present at all in the original fields. Thus, linear interpolation alters

the energy distribution of the original fields. To avoid these problems, a variation of the

resampling method commonly used by engineers in the time-frequency domain (B.E. Eck-

stein, private communication) has been tested. A fast Fourier transform (D.N. Fox, private

communication) has been modified so that the output fields, after the inverse Fast Fourier

Transform, have the required fine grid mesh, although the input fields were supplied on the

coarse grid mesh. After testing, =thls tecl_niquewas m0di_ed (A. W_craft, private com-

munication) to handle irregular coastal geometry, which also has to be interpolated. This

interpolation scheme has been used extensively with the Pacific Basin numerical models to

avoid the lengthy and expensive new spin-ups required whenever the mesh size is changed.

(Further discussion of the Pacific Basin research can be found in Hurlburt et al. [1]).

The effects of changing the mesh size are similar in many ways to those found by changing

the coefficient of horizontal eddy viscosity, An. Therefore, in order to avoid interpolation

effects, the open boundary conditions are studies using models with different coefficients of

horizontal viscosity. There are three model runs to be considered here. The applied run is

made with the large outer domain and with a large value of An. The nested run is made

with the small inner domain and a small value of An. The true run is made with the large

outer domain and with a small value of An. The boundary conditions applied on the open

boundaries of the small domain are taken from the matching grid points on the outer domain

and "adjusted" as described below.
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The numerical ocean model used for both the inner and outer domain is a reduced

gravity, one active layer, primitive equation model with the hydrostatic approximation used.

The fluid is assumed to be incompressible with uniform density in each layer. The effects

of the density difference between the two layers is ignored except when multiplied by the

earth's gravitational acceleration. The prognostic equations for the horizontal components

of momentum are written in transport form while the continuity equation is the prognostic

equation for the layer-depth of the upper, active layer. A spherical coordinate system is used

and the effects of the earth's rotation are incluch;d. For further details of these equations in

analytic form, see Hurlburt and Thompson [2]. This ocean model will be referred toas the
NOARL model.

The outer domain used is a rectangle. The wind forcing is analytic and drives a double

gyre in the ocean model. This choice permits the placement of the inner domain to isolate

various types of flow: normal or tangential to the open boundary, strong or weak, or flow

which changes along the open boundary either spatially or temporally (for time-v_rying

forcing). The work presented here has only one open boundary, either on the western or

northern boundary of the inner domain, and the other three boundaries are closed, matching

the outer domain.

The NOARL ocean model uses a staggered grid to increase the computational accuracy.

If solid walls (closed boundaries) are used, then the eastward velocity, u, and the northward

velocity, v are set to zero along the solid walls. It follows that the eastward transport, U,

and the northward transport, V, must be zero also on the solid walls. For solid walls, no

boundary condition for the layer depth, h, is required, needed. If a boundary is open,

then initial conditions for all five variables _L, v, U, V, and h must be specified to obtain

a numerical solution. However, arbitrary specification of these five variables on the open

boundary will in general overspecify the solution. In general and in this research, if the

inner domain open boundary values are supplied directly from the outer domain with no

modification or adjustments, the inner domain model will eventually "blow up", much less

give the correct solution.

If the open boundary condition cannot be specified exactly, then the goal is to prevent

reflections at the open boundary which quickly destroy the interior solutions. Most nesting

work uses some combination of four basic techniques (Koch and McQueen [3]): blending,

filtering, damping, and radiation. Damping refers to an increase in the coefficient of eddy

viscosity near the open boundary. Filtering, which is used in many numerical models without

open boundaries, is the replacement of a calculated value at a given gridpoint with a weighted

combination of the calculated value and the surrounding values. Blending is the replacement

of the calculated prognostic term near the boundary of the inner grid with a combination of

the prognostic term from the inner grid and that from the outer grid. The radiation technique

(Sommerfeld [5] and Orlanski [4]) calculates the boundary values, assuming a wave is passing

through the boundary. The first three techniques tend to destroy the small scale structure

of the inner grid parameters which defeats the main purpose of running the inner grid with

increased horizontal resolution. The radiation technique tends to let the waves pass out but
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is limited by the problem of calculating the phase speed needed. The question arises as to

how the phase speed should be calculated if there are several types of waves present.

The goal of this research is to produce a nesting technique which does not destroy the

inner grid solution or reduce any improvements made in the solution by using the finer grid.

Therefore, no blending nor any additional damping or filtering has been used on the inner

domain. The radiation technique has been modified from that used by Sommerfeld [5] and

Orlanski [4]. The wave equation is used, not with an inner grid variable, but with a new

variable that is the difference between the inner domain and the outer domain variable, i.e.,

Q(inner) - Q(outer). The actual open boundary condition used on the open boundary is

the sum of the outer domain solution and the q found from the wave equation:

Oq/Ot ._- cOq/On = O,

where c is the phase speed and n is the direction normal to the boundary. The phase speed

used is determined from the mean outflow and the inflow phase speed is set to zero. The

mass exchange along the boundary is the same for the inner and outer domains.

The quality of the nesting technique is measured by how well the inner domain solution

(the nested run) compares with the true run (with the outer domain) solution. This difference

is compared to the difference between the true outer domain solution and the applied outer

domain solution. The first tests were done With steady forcing and nearly normal outflow.

For these cases the differences between the true and nested solution after a year are less than

five percent of the differences between the true and the applied solutions everywhere except

for a very small area near part of the open boundary where the values go up to 20%. This

small portion of the open boundary is where both the non-normal flow is the largest and

the normal flow reverses sign. Note that this region is confined close to the boundary and

does not propagate into the interior of the inner domain. Model runs have been extended

for five years. Although the differences between true and applied runs increase with time,

the differences between the true and nested runs increase much more slowly. Therefore, the

percentages cited above actually decrease with longer model runs.

Ongoing research includes testing open boundaries with non-normal flow, strong jets,

and reversal of flow with time. Also, the nesting technique is being tested with actual ocean

models with irregular coastlines included. Specifically, a tropical Pacific Ocean model has

been nested into a Northern Pacific Basin Model for testing.

The results to date include: .

_, Open boundary conditions that can i_andle both inflow and OUtfloW grid points.

• Phase speed selection is not crucial for regime tested.

• Horizontal interpolation is more critical than temporal interpolation.
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• Five-year nested model runs have been completed.

• Strong tangential flows require both modified h and non-normal treatment of phase

speed.

• Differences in variable values between true and nested runs are, in general, less than

5% of those between true and applied runs.
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Abstract

This paper details the ongoing work of combining three existing software programs

into a nested grid oceanography model. The HYPER domain decomposition program

[8], the SPEM ocean modeling program [5] and a Quasi-Geostrophy model written in

England are being combined into a general ocean modeling facility. This facility will

be used to test the viability and the capability of two-way nested grids in the Nort _
Atlantic.

1 Introduction

We are bcginnlng work on a basin wide coarse grid overlaid with finer grids that follow

major mesoscale and dynamic features in the North Atlantic basin. The grid management

will be handled by the HYPER domain decomposition Progra m [8]. We will consider several
combinations of solution methods to be used inci_iding nesting a primitive equation fine mesh

solution method within another primitive equation coarser grid solution, and a primitive

equation fine mesh solution within a coarser quasi-geostrophic model solution.

-It is well known {-hat t=o :refi-ne the entire coarse mes_-:=i:n space _or :ocean circulation

mo_d_e_ng w---ou[d_e in'efficient ;ii Wouldrequire large amounts of memory_and waste _processor

time in quasi-geostrophic regions. In short, refining the entire coarse mesh is overkill. For

explicit tlme-evoIutlon solution methods of primitive equations the advancement must also

be_severe]y refined in--time t°oaccount for the graviiy wave-s(ab_ity constra-intl- 'this results

in an excessive number of time steps. Alternatively, an implicit solution on a fully refined

mesh results in a very large matrix problem. -

We are attacking two areas of fundamental ocean modeling directly. The efficiency of

the boundary conditions between quasi-geostrophic and primitive equation models should be

advanced based on the insight acquired from our hierarchical approach to the nesting exper-

iments. The second fundamental area is ocean modeling in general. Nested basin/reglonai

grids arc a new concept for ocean applications, and in this respect oceanographic modeling

lags behind atmospheric and aerodynamic modeling. But the success of domain decomposi-

tion in these more advanced modeling areas provides encouragement that our research efforts

are timely, central and well directed towards new, successful applications.

2 The Navier-Stokes Equations on a Rotating Sphere

To examine the Navier-Stokes equations on a rotating sphere in a rotating reference frame

R, let I denote an inertial reference frame, and let r be a radius of that sphere. Tlmn

("t)l, = ("t)l', _-r_ × 7"

|

i
i
!

-i
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where rt = u is velocity and the second term on the right-hand side of the equation is the

motion a non-rotating observer would see because of the rotation of the sphere. Then

On the right-hand side of this equation the second term is the Coriolis acceleration, the third

term is the centripetal acceleration, and the fourth term is the acceleration resulting from

any changes in the rotation speed.

For geophysical applications here on Earth this last acceleration term is discarded except

for very long time scales, and centripetal acceleration can be expressed as a potential,

x (flx r) = -TO_,

that then can be added to the gravitational force potential to net a new geophysical force

potential.
The total or material derivative of a scalar quantity is the same in both reference frames.

Hence the form of the conservation of mass and the thermodynamic equations remains the

same.

To estimate the frictional forces F, we could assume a Newtonian fluid with a symmetric

Navier-Stokes internal pressure tensor. But this molecular dissipative strength would have

an unknown relationship to the dissipative strength of a given mesoscale ocean phenom-

ena. In general, a qualitative description of the transfer of energy and momentum between

scales of interest, and not these smaller molecular scales, are parameterized based on known

qualitative ocean behavior.

i

3 Governing Equations

Coupling hydrodynamics and thermodynamics, consider an adiabatic, inviscid fluid. It can

be described by conservation of momentum, a continuity equation, and an energy equation

coupled with an equation of state. That is,

d
--u + aVP + F = 0
dt

d

dp+ PTV "u = 0
dt

where u C R a is the velocity, a is the specific volunte, P is the pressure, and 3' is the ratio
d 0

of specific heats. Here F is tile Coriolis and gravity forces, and aS = 0-q+ u • V is the total

time derivative.
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3.1 Primitive Equations

The hydrostatic approximation neglects vertical acceleration in the vertical equation of mo-
tion;

OP -g

Oz a

The Boussinesq approximation replaces density with a zeroth order mean density ev-

erywhere except where multiplied by gravity. The combined hydrostatic and Boussinesq

approximations are used to formulate a set of reduced equations known as the primitive
equations.

These equations are as follows:

d

-_ UH + aVH P -t l"u = 0

OP

 -g2z + O o
d

--a-aV.u = 0
dt

d
--P + PTV.u=O
dt

where = -- = ( o o ),.
Oxz ' O_r_

3.2 Geostrophy ...... ,_

Geostrophy, or geopotential flow, retains only the balance between the Corlolis force and the

potential field. Gcostrophy:

fv = gTl_

fu = --g%

is the first approximation in an asymptotic expansion Of the primitive equations. Here r/is

the variation of the sea surfaceheight, a measure of pressure. " : ..... ::_

3.3 Quasi-Geostrophy

Large-scale ocean moveinent]s typically quasi-geostrophic. Asymptotically, quasi-geostrophic

motion has time scales not smaller than the advcctive time scale. It is'geostrophic to low-

est order, yet retains dynamics. Velocity fields can change, but they do so in cont'inuous

geostrophic balance with pressure. Hence there are temporal derivatives retained. The

quasi-geostrophic equations are

ut - fv = -g_

vt = -grl_
....... _ "2 -

rlt + (uH)_ + (vH)u = O.

Here H + 7/is the mean height, H, plus the variation of thickness _.
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4 Related Research

Spall and Holland in unpublished work nested a primitive equation model within,a quasi-

geostrophic model. They found that the quasi-geostrophic boundary conditions seriously

dampened the primitive equation physics close to the boundary, reducing them to essentially

quasi-geostrophic physics in the boundary region. Reducing or eliminating this boundary

layer is the principle focus of our current efforts.

Thompson and Schmitz [7] varied the damping time scale on outflow boundary conditions

for a model of the gulf stream. They found that the outflow dynamics and hence the location

of the Gulf stream are significantly impacted by the outflow boundary conditions. With

such strong impact, the possibility of numerical artifacts in regional models due to boundary

conditions seems large. The lack of existence of well-posed boundary conditions for primative

equations complicates this problem because no comparisons with true boundary conditions

can be made even as approximations [7]. See the article by Dr. Blake in this proceedings for

more detailed information.

This leads to the importance of getting the boundary conditions physically correct. It is

known that the subcharacteristics of the Euler equations, upon which the primitive equations

are based, can have combined inflow and outflow characteristics at both advective inflow and

outflow boundaries, dependent on the sound speed. Hence the dynamics of the refined regions

typically has an affect on the surrounding flow fields. Using one-way boundary conditions

for inflow and one-way for outflow is not, in general, sufficient. There must be a stronger

interaction between the dynamics of the coarse and tlLe refined meshes.

To strengthen the interaction Spall and Holland [9] added a direct, but averaged, insertion

of the streamfunction field (generated using the refined primitive equation depth-averaged

horizontal velocity values on the refined mesh) onto the coarser quasi-geostrophic solution.

They allow the refined mesh to dictate the regional external flow component.

Our hypothesis is that the external flow is insufficient. The strong dynamics in the gulf

stream are forced by internal instabilities. We are currently testing both baroellnic and

barotropic nudging for all prognostic variables to establish a stronger relationship between

the regional dynamics and the coarse mesh solution behavior. This will be done while

maintaining Spall and Hollands quasi-geostrophic to primitive equation boundary conditions

[9], which are barotropic, to see if we can improve upon their results. If we are successful,

we will experiment with a quasi-geostrophic coarse mesh solution and try to find more

comprehensive two-way communication techniques that reduce or eliminate the boundary

layer formation found in the previous work.

We are currently using the barotropic modon defined in [9], and a baroclinic vortex

problem.

We are working with flat topography at first, so that we can combine either fixed or

sigma (stretched) vertical coordinate models.
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5 Initial Boundary Value Problems

For modeling purposes these equations must, of course, be viewed as initial boundary-value

problems (IBVP). Conq)ttt_Ltion_d models use IBVI' for hindcasts, nowcasts, and forecasts

as well as for physical _tu(lie_ that examine l)henomena of interest such as energy cascades,

eddy shedding, and coastal upwelling. There arc two prevalent boundary conditions used in

ocean models: rigid walls and open boundary conditions. The trick, of course, is to find open

boundary conditions that are well posed and yet not overconstrained. Because one cannot

simultaneously diagonahze the coefficient matrices for the multidimensional advective terms

of the Navier-Stokes equations, this is often a time-consuming guessing game.

To define open boundary conditions in general, define a system of equations

Lu = F

with given initial conditions

t= 0) = u0( )
and characteristic boundary conditions

u 1 = Su 2 + g

where u = (ul,uS) * are the prognostic variables, and S is a generalized reflection operator

[4] ..................

But for reduced equations there can also be modeling constraints such as hydrostatic

balance or incompressibility. The modeling constraints assumed in order to reduce the

equations (that is, the asymptotic balances chosen) must be enforced on the initial conditions

and the boundary conditions to avoid introducing inappropriate length and time scales.

Many obvious well:posed boundary conditions are overspecified, which leads to the for-

mation of boundary layers within which the solution adjusts to the additional information.

5.1 Open Boundary Conditions _ : _ ,

The major issue to address is boundary conditions. Oliger and Sundstrom in [4] detail some

boundary treatment for geophysical problems, and show that point-wise local boundary con-

ditions for the primitive equations are not well-posed: the regional open boundary problem

is open-ended. It is not known, however, whether non-local boundary conditions, such as

those generated with a domain decomposition method where boundary Cond_ionS that are

derived from a larger domain are or arc not well-posed. We may have fewer problcrns with

open boundary conditions at a two-sided boundaryl The quasi-geostrophic boundary iayer :

within the nested primitive equation model in the unpublished work of SpaU and Holland

indicate that open boundary conditions on a nested grid is a major problem that must be

addressed.... before two-way nesting will be successful. _ ....... _ __-:_ ,_ _.....

Our approach has been to work from the prinfitlve equation homogeneous model back-

wards to the quasi-geostrophic model, assessing the differences in the information transmit-

ted across boundaries, to derive better open boundary conditions for the simplier quasi-

geostrophic model.
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For the heterogeneousboundary conditions between the primitive equation and quasi-

geostrophic regions the quasi-geostrophic boundaries need to evolve as if there was primitive

equation physics in the region surrounding the refined domain. To insure this we are moni-

toring op on the boundary, where quasi-geostrophic physics, which is less vertically diverse, is

statically stable, and comparing the evolving quasi-geostrophic boundary against a fine mesh

primitive equation global solution. This is one of our measures of error that is physically
based.

6 HYPER

The HYPER program, described in Perkins [5], looks at domain decomposition as a tool to

combine grids for computational efficiency and for model flexibility. It currently can locate

where refined grids should be placed based on asymptotic and-or physical criteria and it

initializes the refined grids using local uniform mesh refinement.

Our current work is a static domain decomposition; we are running experiments on the

influence of the internal boundaries on the flow pattern, and are interested in the flow through

that boundary. These results are currently being prepared and will appear in a later report.

The goal is to follow different asymptotic regimes within the ocean basin that are iden-

tifiable as distinct physical regions of the ocean. The problem is that, once you're inside

a reduced physics region, such as a quasi-geostrophic region where there is no ageostrophic

flow, there may be no way for the model to evolve the complete physics you hope to recover

by using the refined meshes. For example, in the gulf stream region meanders pinch off to

form eddies. Many aspects of the physics contribute to this pinching off. In such cases the

reduced quasi-geostrophic model will not reproduce the ageostrophic behavior in the initial

conditions of the refined mesh, and hence will miss some of the time dependent interac-

tions that contribute to the dynamically significant event of ring shedding. There will be no

ageostrophic signals in the initial conditions to interpolate onto the refified mesh. In such a

situation, the data used to help initialize the model may make up for some of the missing

physics, but the time scales may be off.
Q

7 Domain Decomposition

Domain decomposition allows the mesh to evolve with the solution. It has been applied to

elliptic and hyperbolic equations for several years. The interested reader can refer to Chan,

et al., [2] for an extensive bibliography on elliptic and hyperbolic domain decomposition
methods.

Formally we describe the domain decomposition of a discrete coarse mesh, ft 1, on the

computational mesh fl, for a fixed time t = nAt, by letting (p(t) - 1) be the number of
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refined subdomains used at time t and ¢°klP(t) be those subdomains:
I."" Jk=2

p(t)

U a"(t) c a.
k=l

After the domain is decomposed, local unifi_rm spatial mesh refinement, as developed by

Berger [1], is applied to the new subdomains, q'hc time step may also be refined on these

regions.

The sequencing for one coarse time step of magnitude Act from time t" to time t" + Act,

where rt indexes the discrete time steps on the coarse mesh, is presented next. Let the

temporal refinement ratio from the coarse mesh to the refined meshes be r, and notate this

r/kit = Act, so that a subscript "c" informs us that we are on the coarse mesh, and a

subscript "f" informs us that we are discussing one of the refined meshes. The domain

decomposition algorithm follows:

Domain Decomposition Algorithm

Advance coarse mesh : _,_:.

Mark points'wi_hSlgnifiCan_ mesoscale and ageostrophi¢ potential

Cluster these points into refined meshes

DO r times

Solve equations on refined meshes

ENDDO _

Nudge refined values onto coarse mesh

When aii of the refined meshes have been advancedv refined time steps to the next coarse

time step, their values at time t "+_ are passed to the coarse mesh where a nudging: technique

modifies the coarse advanced values and produces an ag_gregate solution on the coarse mesh*

Let F A, F _, and {F _}_(t_ represent the discrete 6pera_ors for the _ggregate solution on the

original discretized mesh ill, the solution on the coarse mesh _, and the separate solutions

on each of the refined subdomains {f_k}_, respectively. Then the aggregate solution on the

coarse discretized mesh is given by

FA( =C[ .=

where the operat0r:C:is a hudgingiechniquc tlia_t may vary betweeh_cxperimehts.

We use domain decomposition as a tool to combine the explicit coarse mesh solution

method with the refined mesh solution methods to satisfy our varying numericM requirements

in a computatlona]ly emc[ent-way. We usea two-level refinement scheme consist{ng of one

coarse mesh and a set of overlaid refined meshes, where the coarse mesh adequately represents

quasi-geostrophic behavior, while the refined meshes adequately resolves the more physically

complete primitive equations.
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Refinedto coarsemeshcommunication(feedback)can take the form of valueaveraging,
as in Berger[1] and asin Spall and Holland [6].

We areusinga nudgingdata assimilationtechniquefor the initial experimentand wedo
not include explicit conservationenforcement.

Our domain decompositionwork focuseson two-way interactive nestedgrid communi-
cations and the developmentof good internal boundary conditions. We are particularly
interestedin examiningheterogeneousopenboundary conditions betweendifferent asymp-
totic regions. Becausethe major geophysicalequationsare not known to be well-posedas
an initial valueboundary problem, in general,this issuebecomesimportant. °

8 Initial Conditions

Our long range plans are to build a basin wide grid, and overlay it with refined grids about

regions of ageostrophic dynamic regions. The refined grids will then follow mesoscale or

planetary scale dynamical features.

But our current work is much less ambitious. We have constructed a box model and are

using Spall and ttollands [12] barotropic modon and baroclinic vortex problems to examine

the viability and desirability of different communication schemes between the coarse and
refined meshes.

A barotropic modon is a coherent, concentric streamfunction. The barotropic flow is the

primary mode of a quasi-geostrophic equation formulated as a Sturm-Liouville problem (all

other modes of the Sturm-Liouville problem are referred to as baroclinic). It has an analytic

solution, it is quasi-geostrophic, and uses an infinite beta plane approximation. The result

is a coherent depth independent (barotropic) structure that moves at constant speed.

The baroclinic vortex has no analytic solution, and is defined using a Gaussian pressure

distribution with maximum geostrophic velocity of lOOcm/sec. The initial velocity fields are

calculated to be in geostrophic balance with the prescribed Gaussian pressure field.

Our experiment follows a hierarchical approach. Beginning with a homogeneous domain

decomposition we use a full, coarse primitive equation model and keep track of the flow

across the "future" internal boundaries. Then we introduce the nested grid into the same

problem and analyze any changes in the boundary information flow. This is used as our

error due to boundary conditions only. This error is measured both in root mean squared

error and in phase error. Small shifts of mesoscale features are not always bad compared to

changes in dynamics within those mesoscale features.

Once we complete our homogeneous studies we will move to a heterogeneous domain

decomposition with a quasi-geostrophic coarse grid overlaid with a primitive equation refined

grid. Again we will compare the flow across the internal boundaries. Then we will add a

feedback loop that uses the nudging d_tta assimilation technique from the refined mesh to

the coarse mesh and nudge to the true boundary information. This way we can measure the

improvement due to the nudging feedback loop.

The quasi-geostrophic coarser model will be forced by the nudging from the refined prim-

itive equation model. The unforced quasi-geostrophic model is statically stability, but the

J
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primitive equation is not. The forced behavior perturbs the reduced equation dynamics, so

that a time series of its behavior in the refined region will not be statically stability due

to the feedback interaction. But with known density changes at the boundaries from our

true solution, we can measure how well the reduced dynamics are being influenced by the

regional models with their more complete physical models. Another metric is the apparent

ageostrophic time series behavior in the quasi-geostrophic coarser model. After nudging,

the ageostrophic adjustment to the quasi-gcostrophic coarse mesh is calculated, and a time

series of this difference is the ageostrophic forcing of the quasi-geostrophic model. Where

this difference is small, there is no need to maintain a refined mesh, so this metric can be

used to eliminate refined meshes that are no longer needed, but it can not help us locate

where refined meshes should be placed.

8.1 Semi-Spectral Primitive Equation Model (SPEM)

The primitive equation SPEM model of Itaidvogel et. al. [3] has prognostic variables for

horizontal velocity, u and v, and temperature t, and salinity s. It uses the hydrostatic and

Boussinesq approximation. The resulting equations are advanced on an scattered Arakawa

"C" grid in the horizontal, while the vertical is spectral, with Chebyshev modes. It has a

rigid lid approximation at the surface (no variations or "waves" in sea surface height).

9 Current Summary

The computationaJ demands of fully three-dimensional global ocean modeling seem to: re-

quire a nested heterogeneous adaptive grid solution. However, the implementation difficulties

are robust. The need for physically realistic open boundary conditions is already well doc-

umented, mostly a result of a "grand challenge" issued several years ago. Our experience

indicates that an equally pressing need is to provide modeling-consistent asymptoticalIy

nested initial conditions for each new nested grid.

The scientific aspects of the work are focuscd on the boundary condition formulation and

on the two-way grid communication mechanisms under developmenL
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Department of Mathematics

North Carolina State University

Raleigh, North Carolina

and

A. Louise Perkins

Department of Earth, Atmospheric and Planetary Sciences

Massachusetts Institute of Technology

Cambridge, Massachusetts

1 Introduction

The activity in research of domain decomposition for the numerical solution of partial dif-

ferential equations is increasing at a rapid pace. One motivation for domain decomposition

is the isolation of physical phenomenae into separate subdomains. The numerical treatment

(and possibly even the modeling equations) may be different in these subdomains. Thus,

this style of domain decomposition is heterogeneous.

This bibliography includes references to works central to the development of heter_ege---

neous domain decomposition.

The bibliography is by no means complete. Indeed, we would be delighted to receive

additional references to add to the bibliography.

2 Adding to this Bibliography

We would like additional references that are core to the topic of heterogeneous domain
decomposition. Please use the following guidelines:

Format

Medium

Assistance

Bibliographic data should, be in bibtex format. A set of

keywords is requested as part of the format. These keywords

will be used to form the index portion of this database.

Email messages to Louise Perkins or Jeff Scroggs.

To assist with placing the data in bibtex format, send a

request to either of us for the C program BIB_NPUT. T_is

program will interactively prompt you for the data, and ,

produce a file with the formatted entries.
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Disclaimer We are trying to keep this bibliography focused, hence

submissions that do not obviously deal with heterogeneous

domain decomposition will be eliminated.

Please send your references to

Louise Perkins

54-1420

MIT

Cambridge, MA 02139

(617)253-1291

perkins@pimms.mit.edu

or

Jeffrey S. Scroggs

Box 8205

Department of Mathematics

North Carolina State University

(919)737-7817

scroggs@,natjfs.ncsu.edu

3 Index

Acoustics ....................................................................... [1] [191

Adaptive Methods ............................................................... [2] [21]

Asymptotics and Domain Decompostion .............. [3] [5] [6] [11] [14] [26] [27] [28] [30]

Burgers' Equation Solutions ........................................................ [21]

Conservation Laws Formulation Methods ................................ [3] [11] [13] [14]

Convection Diffusion Equation Solutions ........................... [10] [17] [20] [21] [29]

Coupling of Implicit and Explicit Methods .......................................... [21]

Dimensional Issues .................................................................. [4]

Elliptic Equations .................................................................. [15]

Fictious Interfaces .................................................................. [10]

Finite Difference Methods .......................................................... [21]

Finite Element Methods ............................................................ [22]

Hyperbolic Equations ....................................................... [12] [15] [21]

Interface Conditions ................................................... [10] [15] [16] [23]

Iterative Solution Methods ..................................................... [18] [28]

71



IncompressibleFlow Problems ....................................................... [9]
LagrangianFormulations ....................................................... _... [20]
Navier-StokesEquation Solutions .................................................... [8]
Nonlinear Methods ................................................................. [29]
Parabolic Equation Solutions ............................................... [21] [28] [29]

Parallel Processing ........................................................... [71 [6] [21]

Parallel Processing-Distributed Memory ......................................... [2] [30]

Parallel Processing-Massively Parallel ............................................... [13]

Shock Layer Techniques ............................................................ [12]

Steklov-Poincare Operators [24]

Stokes Problem Solutions ............................................................ [23]

Turning Points ..................................................................... [17]

Viscous Inviscid Models, Coupled ............................... [9] [14][21] [22] [27] [30]

References

[1] O. ANDREASSEN AND I. LIE, Numerical simulation of propagation and interaction of

acoustic and elastic waves in two different media, Tech. report 91/7020, NDRE, Div.

for Electronics, P.O.Box 25, N-2007 Kjeller, Norway, March 1991.

[2] H. S. BERRYMAN, J. SALTZ, AND J. S. SCROGGS, Ezecution time support for adap_tiv e

scientific algorithms on distributed memory machines, ICASE Report 90-_ii, ]_._SE,

NASA Langley Research Center, Hampton, Virginia 23665-5225, i990.

[3] A. BOURGEAT AND M. GARBEY, Computation of viscous (or nonviscous) conserva-

tion law by domain decomposition based on asymptotic analysis, Preprint 86, equipe d'

analysie numerique, LYON-St Etienne, September 1989.

[4] D: L. BROWN, L. G. M. REYNA, AND L. GUILLERMO, A two-dimensional mesh

refinement method for problems with one-dimensional singularities, SIA_J.Sci. S_M_,
Comp', 6 (1985), pp. 5i5±531::

[5] R. C. Y. CIIIN, G. W. HEDSTROM, AND F. A. HOWES, Considerations on solving

problems with mulliplc scales, in Multiple Time Scales, J. U. Brackbill and B. I. Cohe-n)

eds., Academic Press, Orlando, Florida, 1985, pp. 1-27.

[6] R. C. Y. CHIN, G. W. HEDSTROM, J. R. MCGRAW, AND F. A. HOWES, Parallel

computation of multiple-scale problems, in New Computing Environments: Parallel,

Vector, and Systolic, A. Wouk, ed., SIAM, Philadelphia, 1986, pp. 136-153 ...............
ql

[7] R. CI: Y' CHIN, G. W. HEDSTRoM, J. S. SCROGGS, AND D. C. SORENSEN, Parallel

computation of a domain decomposition method, in IMACS 6th International Sympo-

sium on Computer Methods for Partial Differential Equations, 1987.

72



[s]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

GEORGES-HENRI COTTET, A particle-grid supcrposition method for the Navier-Stokes

equations, 1989.

Q. v. DINH, R. GLOWINSKI, J. PERIAUX, AND G. TERRASON, On the coupling of

viscous and inviscid models for incompressible fluid flows via domain decomposition_

in First International Symposium on Domain Decomposition Methods for Partial Dif-

ferential Equations, R. Glowinski, G. tI. Golub, G. A. Meurant, and J. Perlaux, eds.,

Philadelphia, 1988, SIAM, pp. 350-369.

A. FRATI, R. PASQUARELLI, AND A. QUATERONI, Spectral approzimation to

advection-diffusion problems by the fictitous interface method, Tech. Report UMSI

90/213, University of Minnesota, Minneapolis, Minnesota, October, 1990.

M. GARBEY, Quasilinear hyperbolic-hyperbolic singular perturbation problem: Study of

a shock layer, Mathematical Methods in the Applied Sciences, 11 (1989), pp. 237-252.

M. GARBEY, Asymptotic analysis of singular perturbation problems governed by a con-

servation law, Preprint MCS-P107-1089, MCS, Argonne National Lab, October 1989.

M. GARBEY AND D. _LEVINE, Massively parallel computation of conservation laws,

Preprint MCS-P85-0689, MCS, Argonne National Lab, June 1989.

MARC GARBEY AND JEFFREY S. SGROGGS, Asymptotic-induced method for conser-

vation laws, in Proceedings for the Workshop on Asymptotic Analysis and Numerical

Solution of Partial Differential Equations, It. Kaper and M. Garbey, eds., New York,

New York, 1990, Marcel Dekker, Inc., pp. 75-98.

F. GASTALDI, A. QUATERONI, AND G. S. LANDRIANI, Effective methods for the

treatment of interfaces separating equations of different character, in CMEM meeting,

Capri, May 23-26, 1989.

F. GASTALDI, A. QUATERONI, AND G. SACCHI LANDRIANI, On the coupling of two

dimensional hyperbolic and elliptic equations: Analytical and numerical approach, Tech.

Report Quaderno n. 10/89, Dipartimento di Mathematica, Universita' Cattolica del

Sacro Cuore, Brescia, Italy, March 1989.

G. W. HEDSTROM AND F. A. HOWES, A domain decomposition method for a qonvec-

tion diffusion equation with turning points, in Domain Decomposition Methods, T. F.

Chan, R. Glowinski, J. Periaux, and O. B. Widlund, eds., Philadelphia, 1989, SIAM,

pp. 38-46.

G. SACCHI LANDRIANI AND A. QUATERONI, Iteration by subdomains in numerical

fluid dynamics, Tech. Report Quaderno n. 9/89, Dipartimento di Mathematica, Univer-

sita' Cattolica del Sacro Cuore, Brescia, Italy, March 1989.

73



[19] I. LIE, Ocean/bottom acoustic interaction with arbitrary bottom profile, Tech. report

91/7022, NDRE, Div. for Electronics, P.O.Box 25, N-2007 Kjeller, Norway, March 1991.

[20] A. L. PERKINS, Parallel Heterogeneous Mesh Refinement For Multidimehsional

Convection-Diffusion Equations Using An Euler-Lagrange Method, PhD thesis, Uni-

versity of California, Davis, 1989.

[21] A. Louise PERKINS AND GARRY RODRIGUE, A domain decomposition method for

solving a two-dimensional viscous Burgers' equation, App. Numer. Math., 6 (1990),

pp. 329-340.

[22] A. QUATERONI, G. S. LANDRIANI, AND A. VALLI, Coupling of viscous and inviscid

Stokes equations via a domain decomposition method for finite elements, Tech. Report

UTM 287, Dipartimento di Mathematica, Universita delgi Studi di Trento, Provo, Italy,
October 1989.

[23] A. QUATERONI AND A. VALLI, Domain decomposition for a generalized Stokes problem,

Tech. Report UTM 259, Dipartimento di Mathematica, Universita delgi Studi di Trento,

Provo, Italy, November 1988.

[24] A. QUATERONI AND A. VALLI, Theory and application of Steklov-Poincare operators

for boundary value problems: the heterogeneous operators case, Tech. Report UMSI

90/232, University of Minnesota, Minneapolis, Minnesota, November 1990.

[25] A. QUATERONI, Domain decomposition method for the numerical solution of partial dif-

ferential equations, Tech. Report UMSI 90/264, University of Minnesota, Minneapolis,

Minnesota, December, 1990.

[26] M. F. Russo AND R. L. PESKIN, Automatically identifying the asymptotic behavior

of nonlinear singularly periurbed boundary value problems, 1989: : .....

[27] J. S. SCROGGS, A physically motivated domain decomposition for singularly perturbed

equations, SIAM Journal on Numerical Analysis, (to appear, 1990). :

[28] J. S. SCROGGS, The Solution of a Parabolic Partial Differential Equation via Domain

Decomposition: The Synthesis of Asymptotic and Numerical Analysis, PhD thesis, Uni-

versity of Illinois at U-i_, 1988.

[29] J. S. SCROGGS., A parallel algorithm for nonlinear convection-diffusion equations, in

Proceedings for SIAM Conference on Domain Decomposition, SIAM, 1989.

[30] J. S. SCROGGS AND J. SALTZ, Distributed-memory computing of a physically-motivated

domain decomposition method, in Proceedings for SIAM Conference.on Domain Decom-

position, SIAM, 1990. '

74



Report Documentation Page

1. Report No. |

NASA CR- 187630 [ICASE Interim Report 19

4. Title and Subtitle

2. Government Accessioo No.

PROCEEDINGS FOR THE ICASE WORKSHOP ON HETEROGENEOUS

BOUNDARY CONDITIONS

3. Recipient's Catalog No.

5. Report Date

August 1991

7. Author(s)

A. Louise Perkins

Jeffrey S. Scroggs

9. Performing O_anization Name and Address
Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Adminstration

Langley Research Center

Hampton, VA 23665-5225

6. Performing Organization Code

8, Performing Organization Report No.

Interim Report No. 19

10 Work Unit No.

505-90-52-01

11. Contract or Grant No.

NASI-18605

13. Ty_ of ReportandPeriodCovered

Contractor Report

14. Sponsoring ,_gency Code

15. Supplementa_ Notes

Langley Technical Monitor:
Michael F. Card

Final Report
16. Abstract

Domain Decomposition is a complex problem with many interesting aspects.

The choice of decomposition can be made based on many idifferent criteria, and the

choice of interface of internal boundary conditions are numerous. Even more inter-

esting from a modeling perspective is that the various regions under study may have

different dynamical balances, indicating that different physical processes are dom-

inating the flow in those regions. It may be desi-rable to use different numerical

approximations in the regions where the physical processes are dominated by different
balances.

The Institute for Computer Applications in Science and Engineering (ICASE),

recognizing the need to more clearly define tlte nature of these complex problems,

sponsored this workshop on Heterogeneous Boundary Conditions at the NASA Langley

Research Center in Hampton, Virginia. This proceedings is an informal collection

of the presentations and discussion groups. It also includes a bibliography that

contains many of the references that discuss related topics.

The proceedings begins with summaries of the discussion groups. Then papers

describing the talks are presented. Lastly, the bibliography is included, and an

index by subject is provided.
17. Key Words (Suggested by Author(s))

numerical analysis

19. Security Classif. (of this report)
Unclassified

18. Distribution Statement

64 - Numerical Analysis

tlnclassificd - tIntimited

20 Security_'Cla-r_i-f-.--(of_hispagei ................. 21 No. of pages

Unc la s s i f led 80

22. Price

A05

NASA FORM 1626 0CT86



+ •


